Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-Human Primates

Qidi Wang^{#,2}, Lianfeng Zhang^{#,3}, Kazuhiko Kuwahara^{#,4}, Li Li ², Taisheng Li ⁵, Hua Zhu ³, Jiangning Liu ³, Yanfeng Xu ³, Jing Xie ⁵, Hiroshi Morioka ⁴, Nobuo Sakaguchi ^{*,4. 6}, Chuan Qin ^{*,3}, Gang LIU ^{*,1,2}

1. Tsinghua-Peking Center for Life Sciences & School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing 100084, P. R. China.

Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nanwei Rd.,
 Xuanwu Dist, Beijing 100050, P. R. China.

3. Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.

4. Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan.

5. Department of Infectious Disease, Peking Union Medical College Hospital and AIDS Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100071, P. R. China.

6. WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.

These authors equally contribute to this study.

* To whom correspondence should be addressed. <u>nobusaka@ifrec.osaka-u.ac.jp</u>, <u>qinchuan@pumc.edu.cn</u>, or <u>gangliu27@tsinghua.edu.cn</u>

Supplements

 Table S1. Neutralization and enhancement of SARS-CoV infection of Vero E6 cells in the presence of human antisera of convalescent

 SARS patients*

[#] Enhanc	ement of SARS-CoV ir	nfection				[#] Blockage o	f SARS-CoV infection
SARS		SARS		SARS		SARS	
patient		patient		patient		patient	
code	Neutralization	code	Neutralization	Code	Neutralization	code	Neutralization
W1	$-117.00\% \pm 13.73$	W49	$-53.00\% \pm 11.14$	S204	$-58.00\% \pm 9.98$	W33	29.00% ±6.28
W9	$-92.00\% \pm 10.15$	W61	$-49.00\% \pm 16.08$	S101	$-91.00\% \pm 8.50$	W29	48.00% ±6.00
W35	$-100.00\% \pm 11.56$	W53	$-53.00\% \pm 8.91$	S245	$-46.00\% \pm 7.69$	W73	50.00% ±7.77
W38	$-65.00\% \pm 8.41$	S102	$-43.00\% \pm 1.95$	S98	$-62.00\% \pm 12.58$	S100	25.00% ±11.92
W41	$-48.00\% \pm 9.82$	S196	$-46.00\% \pm 10.29$			3E7	36.00% ±2.27
W45	$-42.00\% \pm 10.92$	S241	$-50.00\% \pm 9.35$			1G4	56.00% ±0.77

*Total 116 antisera (1:500 dilution) were tested in the neutral red staining(NRS) assay.

[#]For neutralization, six antisera with > 20% inhibition were defined as significantly blocking SARS-CoV infection; for enhancement, 17 antisera with > 40% augmentation were defined as significantly enhancing SARS-CoV infection.

 Table S2 Design and synthesized new peptides

Novel peptides from the Spike glycoprotein

S11-38: TSGSDLDRCTTFDDVQAPNYTQHTSSMR

S119–132: NSTNVVIRACNFEL

S138–158: FAVSKPMGTQTHTMIFDNAFN

S159–184: CTFEYISDAFSLDVSEKSGNFKHLRE

S162–180: EYISDAFSLDVSEKSGNFK

S188–211: KNKDGFLYVYKGYQPIDVVRDLPSG

S342–368: RKKISNCVADYSVLYNSTFFSTFKCYG (Disulfide)

S391–404: GDDVRQIAPGGTGV

S416-434: FMGCVLAWNTRNIDATSTG

S436–459: YNYKYRYLRHGKLRPFERDISNVP

S471-490: ALNCYWPLNDYGFYTTTGIG

S491–502: YQPYRVVVLSFE

S522–535: NQCVNFNFNGLTGT

S597–625: LYQDVNCTDVSTAIHADQLTPAWRIYSTG

S679–695: MSLGADSSIAYSNNTIA

S686–713: SIAYSNNTIAIPTNFSISITTEVMPVSM

S803–828: LLFNKVTLADAGFMKQYGECLGDINA

S946–960: KQLSSNFGAISSVLN

S965–986: RLDKVEAEVQIDRLITGRLQSL

S993–1012: QLIRAAEIRASANLAATKM

S1084–1110: WFITQRNFFSPQIITTD

S1138–1154: FKNHTSPDVDLGDISG

S1155–1178: NASVVNIQKEIDRLNEVAKNLNE

					Binding
Clone no.		Isotype		Function*	affinity
					to the peptide
	2F7	IgG1	κ	NF	1.10E–09
	3E10	IgG1	κ	NF	2.95E-09
	4E5	IgG1	κ	Neutralizing	4.67E–09
S ₄₇₁₋₅₀₃	4A10	IgG1	к	Neutralizing	2.96E-09
	6G5	IgG2b	к	Neutralizing	5.82E-09
	6A10	IgG1	κ	NF	7.57E–09
	9A6	IgG1	к	NF	4.94E-09
	2B4	IgG1	к	NF	4.75E-06
	3B10	IgG1	к	NF	2.17E-07
$S_{604-625}$	4H11	IgG1	к	NF	1.68E-08
	9A6	IgG1	к	NF	2.62E-09
	3A2	IgG2a	к	NF	8.16E–09
	Clone no. S471-503	Clone no. 2F7 3E10 4E5 4A10 6G5 6A10 9A6 3B10 3B10 4H11 9A6 3B10 3B10 3A2	Clone no.Isotype2F7IgG13E10IgG14E5IgG14A10IgG16G5IgG2b6A10IgG19A6IgG13B10IgG13A2IgG2a	Clone no.Isotype2F7IgG1к3E10IgG1к4E5IgG1к6G5IgG2bк6A10IgG1к9A6IgG1к3B10IgG1к3B10IgG1к3B10IgG1к9A6IgG1к3A2IgG2aк	Clone no.IsotypeFunction*2F7IgG1кNF3E10IgG1кNF4E5IgG1кNeutralizing6G5IgG2bкNeutralizing6G5IgG1кNF9A6IgG1кNF3B10IgG1кNF3B10IgG1кNF3A2IgG2aкNF

Table S3. Generated antipeptide mAbs* NF=not functional.

13		11B1	IgG2a	к	Neutralizing	2.32E-09
14		11B3	IgG2a	к	NF	6.94E–08
15		14F1	IgG2b	к	NF	1.58E-06
16		6D5	IgG1	к	NF	8.77E–09
17		37-9-5	IgG1	к	NF	3.94E-10
18	S _{597–625}	43-3-14	IgG1	к	Enhancing	1.21E–11
19		65-5-10	IgG1	к	NF	2.21E-10
20		219-10-28	IgG1	к	Enhancing	1.20E-08
21		126-10	IgG1	к	Neutralizing	4.59E–9
22	S _{1164–1191}	581-39	IgG1	к	NF	1.56E–9
23		608-25	IgG1	κ	NF	1.68E–9

 Table S4 Alanine walking peptides

L597A: AYQDVNCTDVSTAIHADQLTPAWRIYSTG Y598A: LAQDVNCTDVSTAIHADQLTPAWRIYSTG Q599A: LYADVNCTDVSTAIHADQLTPAWRIYSTG D600A: LYQAVNCTDVSTAIHADQLTPAWRIYSTG V601A: LYQDANCTDVSTAIHADQLTPAWRIYSTG N602A: LYQDVACTDVSTAIHADQLTPAWRIYSTG C603A: LYQDVNATDVSTAIHADQLTPAWRIYSTG T604A: LYQDVNCADVSTAIHADQLTPAWRIYSTG D605A: LYQDVNCADVSTAIHADQLTPAWRIYSTG

V606A: LYQDVNCTDASTAIHADQLTPAWRIYSTG

mAb43-3-14 specifically binding short peptides

Leu-6-Asn(S597-602): LYQDVN

Leu-7-Cys(S597–603): LYQDVNC

Leu-8-Thr(S597-604): LYQDVNCT

Vac	el (Contro	l group)		Vac2		Vac3				Vac4		
			(MAP-S	597-625 form	nulated with	(MAP-	(MAP-S ₄₇₁₋₅₀₃ , MAP-S ₆₀₄₋₆₂₅ ,			/IAP-S471-50)3,	
				FCA/IFA)		MAP-S _{1164–1191} formulated with			MAP-S ₅₉₇₋₆₂₅ ,			
							FCA/IFA)		MAP-S	1164–1191 fori	nulated	
									wi	th FCA/IF	A)	
Animal	Gender	Body	Animal	Gender	Body	Animal	Gender	Body	Animal	Gender	Body	
code		Weight	code		weight	Code		weight	code		weight	
		(kg)			(kg)			(kg)			(kg)	
041870	F	5.2	040888	F	5.6	041057	М	6.1	041642	F	4.6	
(A1)			(B1)			(C1)	111		(D1)			
031860	F	4.8	040390	F	5.2	030874	F	5.5	030177	М	5.4	
(A2)			(B2)			(C2)			(D2)	101		
040995	М	6.0	040085	М	6.5	040203	М	5.1	041399	М	4.8	
(A3)			(B3)			(C3)			(D3)			
041911	М	4.3	031519	М	5.0	031632	F	6.2	041902	F	6.1	
(A4)			(B4)			(C4)	÷		(D4)	•		

Table S5 Monkeys for peptide vaccine immunization against SARS-CoV

040669	М	5.5	041811		5.1	041659	4.	.5
				М			Μ	
(B5)			(C5)			(D5)		
040830	F	4.8	041962		4.5	041326	6.	.0
				F			F	
(B6)			(C6)			(D6)		

Table S6 Vaccinated animals sacrificed at 2 DPI

Vac1		Vac2		Vac3		Vac4	
Animal code	Gender						
041870	F	040888	F	041057	М	041642	F
(A1)		(B1)		(C1)		(D1)	
031860	F	040390	F	030874	F	030177	М
(A2)		(B2)		(C2)		(D2)	
		040085	М	040203	М	041399	М
		(B3)		(C3)		(D3)	

 Table S7 Vaccinated animals sacrificed at 6 DPI

Vac1		Vac2		Vac3		Vac4	
Animal	Gender	Animal	Gender	Animal	Gender	Animal	Gender
code		code		code		code	
040995	М	041519	М	031632	F	041902	F
(A3)		(B4)		(C4)	1	(D4)	1
041911 (A4)	М	040669	М	041811	М	041659	М

	(B5)		(C5)		(D5)	
	040830	F	041962	F	041326	F
	(B6)		(C6)		(D6)	

 Table S8 Pathologic classification of the severity of the lung damage in SARS-CoV-infected rhesus macaques

Grade	Pathologic classification of the severity of the lung damage in SARS-CoV-infected rhesus macaques
_	normal macaque lung section without SARS-CoV infection
±	minor inflammation, slight alveolar septal broadening and sparse monocyte infiltration
Ι	apparent inflammation, hemorrhage in septa, elastic fibers of alveolar wall distorted as shown by silver staining
II	early symptoms of acute diffuse alveolar damage (DAD), alveolar septal broadening with increasing infiltration of inflammatory
	cells
III	typical symptoms of acute DAD, extensive exudation and septal broadening, shrinkage of alveoli caused by pressure, restricted
	fusion of thick septa, ruptured elastic fibers of alveoli, variably filled with protein-rich edema fluid, fibrin, erythrocytes, cellular
	debris, and a moderate number of inflammatory cells in alveolar cavities
IV	severe acute DAD, massive cell infiltration and alveolar shrinking, sheets of septal fusion, necrotic lesions at the hemorrhagic septa
	and massive cell numbers in alveolar cavities

	Con	trol group(0.99	% NaCl)		0.2mg/kg gro	up	1.8mg/kg group		
	Group	Animal	Body	Group	Animal	Body	Group	Animal	Body
		code	weight(kg)		code	weight(kg)		code	weight(kg)
	A1	061920	3.3	B1	041986	4.2	D1	051848	3.85
2 DPI	A2	050426	4.1	B2	040654	3.8	D2	051976	3.9
	A3	051926	3.6	B3	060512	3.15	D3	060578	3.3
	A4	060090	3.5	B4	051192	4.1	D4	060060	3.7
6 DPI	A5	051804	3.9	B5	051820	3.6	D5	040478	3.8
	A6	050104	4.0	B6	051282	3.8	D6	051144	4.1

Table S9 Monkeys treated by mAb43-3-14 were sacrificed at 2 DPI or 6 DPI

MAP\Conditions	Lysine	Reaction	Reaction	Reaction	Preparation	Molecular	Amount	Purity
	core/peptide	solvent	pH/Reaction	monitoring	condition	weight	(Yield)	
	amount		time	gradient		(Da,		
						calculated/		
						observed)		
MAP-S ₆₀₄₋₆₂₅	0.4 mg (0.42	CH ₃ CN/H ₂	7.8 (saturated	0–25%	Vydac	10655.83/1	2.1 mg (40%)	98%
	mmol)/5.1	O (25/75,	Na ₂ CO ₃	CH ₃ CN for 8	(208TP510),	0656.1072		
	mg (2.00	v/v)	adjusting), 2	min, 25–45%	0–25%			
	mmol)		h	CH ₃ CN for	CH ₃ CN for 5			
				50 min	min, 25–40%			
					CH ₃ CN for			
					50 min			
MAP-S ₅₉₇₋₆₂₅	0.35 mg	CH ₃ CN/H ₂	8.5 (saturated	0–25%	Vydac	13581.83/1	2.5 mg (50%)	95%
	(0.37	O (50/50,	Na ₂ CO ₃	CH ₃ CN for 8	(214TP1022)	3587.2338		
	mmol)/5.0	v/v)	adjusting), 5	min, 25–45%	, 0–25%			
	mg (1.54		h	CH ₃ CN for	CH ₃ CN for 5			

 Table S10 The conditions for preparation of multiple antigen peptides

S**14** / S**19**

	mmol)			50 min	min, 25–40%			
					CH ₃ CN for			
					50 min			
MAP-S ₄₇₁₋₅₀₃	0.30 mg	CH ₃ CN/H ₂	8.5 (saturated	0–40%	Vydac	16084.23/1	1.5 mg (30%)	96%
	(0.31	O/DMSO	Na ₂ CO ₃	CH ₃ CN for 8	(214TP1022)	6091.4292		
	mmol)/5.0	(40/50/10,	adjusting),	min, 40–55%	, 0–25%			
	mg (1.29	v/v/v)	overnight, or	CH ₃ CN for	CH ₃ CN for 5			
	mmol)		ultrasonicatio	50 min	min, 25–40%			
			n		CH ₃ CN for			
					50 min			
MAP-S _{1164–1191}	0.35 mg	CH ₃ CN/H ₂	7.8 (saturated	0–25%	Vydac	14389.03/1	2.1 mg (42%)	98%
	(0.37	0	Na ₂ CO ₃	CH ₃ CN for 8	(208TP510),	4392.1516		
	mmol)/5.0	(25/75, v/v)	adjusting), 2	min, 25–45%	0–35%			
	mg (1.54		h	CH ₃ CN for	CH ₃ CN for 5			
	mmol)			50 min	min, 35–45%			
					CH ₃ CN for			
					50 min			

Chart S1. The protocol of immunization of rhesus monkeys

Fig. S1 The serologic reactivity of peptides with the human IgG of convalescent SARS patients.

Fig. S2 Characterization of S₆₀₄₋₆₂₅, S₁₁₆₄₋₁₁₉₁, S₅₉₇₋₆₂₅ and S₄₇₁₋₅₀₃. RP–HPLC profiles and MS data.

Fig. S3 Characterization of lysine core by RP–HPLC analysis and mass spectrum.

Fig. S4 Lung tissue viral burden analyzed by RT-PCR (A1-A4: Vac1 group, B1-B6: Vac 2 group, C1-C6: Vac 3 group, D1-D6: Vac 4 group)

Fig. S5 Lung tissue viral burden analyzed by RT-PCR (A1-A6: 0.9% NaCl group, B1-B6: 0.2mg/kg group, C1-C6: 1.8mg/kg group)