| 1  | <b>Retention of Organic Micropollutants in Nutrient</b>                                                 |
|----|---------------------------------------------------------------------------------------------------------|
| 2  | <b>Recovery from Centrate by Electrodialysis – Influence</b>                                            |
| 3  | of Feed pH and Current Density                                                                          |
| 4  | Supporting Information                                                                                  |
| 5  |                                                                                                         |
| 6  | Paul Genz <sup>a</sup> , Victor Takazi Katayama <sup>b</sup> , Thorsten Reemtsma <sup>a, c*</sup>       |
| 7  |                                                                                                         |
| 8  | <sup>a</sup> Helmholtz-Centre for Environmental Research – UFZ, Department of Analytical                |
| 9  | Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany                                                   |
| 10 | <sup>b</sup> Fraunhofer Umsicht, Department Environment and Resources, Osterfelder Straße 3,            |
| 11 | 46047 Oberhausen, Germany                                                                               |
| 12 | <sup>c</sup> University of Leipzig, Institute for Analytical Chemistry, Linnéstrasse 3, 04103, Leipzig, |
| 13 | Germany                                                                                                 |
| 14 |                                                                                                         |
| 15 | *Corresponding author: thorsten.reemtsma@ufz.de                                                         |
| 16 |                                                                                                         |

## 17 Chemicals and Analytical Standards

- 18 Ultrapure water was produced with a Merck MilliQ Integral 5 System (Merck, Darmstadt,
- 19 Germany) and used for dilution of all samples, including samples for salts, nutrients and
- 20 metals analysis. Additionally, it was used for the mobile phase component A in the LC-
- 21 MS/MS gradient. As mobile phase component B UPLC grad methanol (BioSolve,
- 22 Valkenswaard, Netherlands) was used.
- 23 For analysis of micropollutants by LC-MS/MS, stock solutions of analytical standards were
- 24 prepared in methanol or a water/methanol mix and stored at -20 °C until calibration
- 25 standards were prepared. For ICP-MS analysis a mix of analytical standards (Spex 1,
- 26 Spex 2a, Spex 3, Spex 4; SpexCertiprep, Metuchen, USA) & Merck VI; (Merck, Darmstadt,
- 27 Germany) was prepared for calibration in an aqueous 1 % HNO<sub>3</sub> (HNO<sub>3</sub> (60%), Ultrapur,
- 28 Merck, Darmstadt, Germany) solution. Single-element analytical standards for elemental
- analysis with ICP-OES were obtained from Merck (Darmstadt, Germany) as well.

## 31 Tables

|                       |      |                            | Experiments                      |                                          |
|-----------------------|------|----------------------------|----------------------------------|------------------------------------------|
| parameter             | unit | Varying Current<br>Density | Varying feed p<br>Synthetic Feed | H: Treatment of<br>nitrified<br>centrate |
| cell pairs ED         | -    | 10                         | 10                               | 10                                       |
| channel length        | mm   | 110                        | 110                              | 110                                      |
| channel width         | mm   | 110                        | 110                              | 110                                      |
| channel thickness     | mm   | 0.45                       | 0.45                             | 0.45                                     |
| membrane<br>thickness | μm   | 100-120                    | 100-120                          | 100-120                                  |
| flow rates            | L/h  | 35-45                      | 45-65                            | 75                                       |
| flow velocity         | m/s  | 0.20 - 0.25                | 0.25 - 0.36                      | 0.42                                     |
| unit cell voltage     | V    | 4 - 6                      | 4 - 6                            | 4 - 6                                    |
| current               | А    | 0.1; 0.13; 0.11; 0.31      | 0.2                              | 0.2                                      |

32 Tab. SI 1: Information on operation of electrodialysis system.

33

34

35 Tab. SI 2: Characteristics of nitrified centrate produced by the first stage of the nutrient

36 recovery system investigated in this study. Data is based on unpublished research.

|                           | Nitrified Centrate |
|---------------------------|--------------------|
| TN (mg/L)                 | 880±64             |
| NO <sub>3</sub> -N (mg/L) | 860±53             |
| PO <sub>4</sub> -P (mg/L) | 34±1.7             |
| NH <sub>4</sub> -N (mg/L) | 4.8±2.4            |
| NO <sub>2</sub> -N (mg/L) | 1.1±0.95           |
| TCOD (mg/L)               | 180±11             |
| рН (-)                    | 6.0±0.2            |

## Tab. SI 3: Overview of relevant physical chemical properties for analysed micropollutants. Prediction of compound properties by ChemAxon.

|                         | CAS         | Mass    | рК <sub>а,1</sub> | рК <sub>а,2</sub> | pK <sub>b,1</sub> | pK <sub>b,</sub> | Isoelectric | logD <sub>(pH 3.0)</sub> | logD <sub>(pH 6.0)</sub> | logD <sub>(pH 8.0)</sub> |
|-------------------------|-------------|---------|-------------------|-------------------|-------------------|------------------|-------------|--------------------------|--------------------------|--------------------------|
|                         |             |         |                   |                   |                   | 2                | Point       |                          |                          |                          |
| 4/5-Methylbenzotriazole | 29878-31-7  | 133.154 | 9.3               | -                 | 0.5               | -2.5             | 4.9         | 1.8                      | 1.8                      | 1.8                      |
| Acesulfame              | 33665-90-6  | 163.15  | 3.0               | -                 | -6.0              | -                | -           | -0.8                     | -1.5                     | -1.5                     |
| Benzotriazole           | 95-14-7     | 119.127 | 8.6               | -                 | 0.6               | -9.6             | 4.6         | 1.3                      | 1.3                      | 1.2                      |
| Carbamazepine           | 298-46-4    | 236.274 | 16.0              | -                 | -3.8              | -                | -           | 2.8                      | 2.8                      | 2.8                      |
| Candesartan             | 139481-59-7 | 440.463 | 3.5               | 5.9               | 1.5               | -1.4             | 2.5         | 5.2                      | 2.5                      | 0.3                      |
| Diclofenac              | 15307-86-5  | 296.15  | 4.0               | 16.4              | -2.1              | -                | -           | 4.2                      | 2.3                      | 0.9                      |
| Ibuprofen               | 15687-27-1  | 206.285 | 4.9               | -                 | -                 | -                | -           | 3.8                      | 2.7                      | 0.8                      |
| Lamotrigine             | 84057-84-1  | 256.09  | 15.0              | 19.2              | 5.9               | -0.7             | 10.9        | -0.7                     | 1.7                      | 1.9                      |
| Lidocaine               | 137-58-6    | 234.343 | 13.8              | -                 | 7.8               | -5.3             | 10.8        | -0.6                     | 1.1                      | 2.6                      |
| Melamine                | 108-78-1    | 126.123 | 15.7              | 16.9              | 9.6               | 2.8              | 12.6        | -2.8                     | -2.5                     | -2.0                     |
| Metformin               | 657-24-9    | 129.167 | 19.2              | -                 | 12.3              | 10.3             | -           | -5.7                     | -5.7                     | -5.4                     |
| Metoprolol              | 51384-51-1  | 267.369 | 14.1              | -                 | 9.7               | -3.2             | 11.9        | -1.5                     | -1.3                     | 0.1                      |
| Sulfamethoxazole        | 723-46-6    | 253.28  | 6.2               | -                 | 2.0               | 0.3              | 4.1         | 0.8                      | 0.6                      | -0.1                     |
| Valsartan Acid          | 164265-78-5 | 266.26  | 4.0               | 5.9               | -1.4              | -3.7             | 1.3         | 3.1                      | 0.9                      | -1.7                     |

- 41 Tab. SI 4: Composition of the synthetic wastewater used as feed for the experiments of
- 42 varying current densities and varying pH<sub>feed</sub>. TRIS was added as a buffer to stabilize pH.
- 43 For the experiment with varying feed pH the pH was stabilized using acid dosing.

|                                                         |             |                  | added i | nto 4L MilliQ    |
|---------------------------------------------------------|-------------|------------------|---------|------------------|
| Ingredient                                              | Manufacture | Feed             | Varying | Varying feed pH: |
|                                                         | r           | Concentration in | Current | Synthetic Feed   |
|                                                         |             | Μ                | Density |                  |
| NaCl                                                    | VWR         | 0.05             | 10.55 g | 11.25 g          |
| Na <sub>2</sub> HPO <sub>4</sub> *7·H <sub>2</sub><br>O | Merck       | 0.002            | -       | 1.075 g          |
| NaH <sub>2</sub> PO <sub>4</sub> *H <sub>2</sub> O      | Merck       | 0.002            | 3.12 g  | -                |
| TRIS                                                    | Merck       | 0.01             | 40 mL   | -                |

- 45 Tab. SI 5: Overview of operational parameters during investigation of pH dependent
- 46 transport in ED. All values obtained with DataView-Data Logger and aggregated for the
- 47 *duration of the experiment.*

|         | EC <sub>Conc</sub>    | ECDiluate   | pH <sub>Diluate</sub> | pH <sub>Concentrate</sub> | Current         | Current     | Voltage     |
|---------|-----------------------|-------------|-----------------------|---------------------------|-----------------|-------------|-------------|
|         | in mS/cm              | in mS/cm    |                       |                           | in A            | Density     | in V        |
|         |                       |             |                       |                           |                 | in A/m²     |             |
| Experim | Experiment pH Feed: 7 |             |                       |                           |                 |             |             |
| Run #1  | 7.00 ± 0.93           | 4.32 ± 0.88 | 6.99 ± 0.00           | 7.03 ± 0.00               | 0.19 ± 0.05     | 1.46 ± 0.38 | 4.09 ± 1.17 |
| Run #2  | 7.80 ± 1.15           | 4.52 ± 1.10 | 7.49 ± 0.02           | 7.54 ± 0.00               | 0.17 ± 0.07     | 1.36 ± 0.53 | 3.49 ± 1.41 |
| Experim | ent pH Feed           | 1: 8        |                       |                           |                 |             |             |
| Run #1  | 7.24 ± 0.86           | 4.22 ± 0.82 | 7.96 ± 0.02           | 8.00 ± 0.03               | 0.19 ± 0.03     | 1.51 ± 0.27 | 4.45 ± 0.91 |
| Run #2  | 8.24 ± 1.04           | 4.07 ± 0.97 | 8.25 ± 0.08           | 8.34 ± 0.09               | $0.20 \pm 0.00$ | 1.56 ± 0.04 | 4.10 ± 0.29 |
| Experim | ent pH Feed           | 1: 6        |                       |                           |                 |             |             |
| Run #1  | 7.74 ± 0.75           | 3.81 ± 0.70 | 6.07 ± 0.01           | 6.03 ± 0.01               | $0.20 \pm 0.00$ | 1.57 ± 0.00 | 4.82 ± 0.40 |
| Run #2  | 7.49 ± 1.05           | 4.63 ± 1.04 | 6.54 ± 0.03           | 6.59 ± 0.02               | 0.17 ± 0.07     | 1.31 ± 0.58 | 3.33 ± 1.52 |
| Experim | ent pH Feed           | l: 4        |                       |                           |                 |             |             |
| Run #1  | 8.06 ± 1.00           | 3.70 ± 0.90 | $3.88 \pm 0.04$       | 4.34 ± 0.11               | 0.18 ± 0.05     | 1.44 ± 0.41 | 4.67 ± 1.47 |
| Run #2  | 7.98 ± 1.02           | 4.01 ± 0.95 | 4.39 ± 0.09           | 4.88 ± 0.13               | 0.24 ± 0.01     | 1.87 ± 0.10 | 4.55 ± 0.49 |
| Experim | ent pH Feed           | 1:3         |                       |                           |                 |             |             |
| Run #1  | 8.07 ± 1.07           | 4.16 ± 1.02 | 2.83 ± 0.06           | 3.45 ± 0.22               | 0.19 ± 0.04     | 1.50 ± 0.32 | 4.72 ± 1.16 |
| Run #2  | 7.97 ± 1.10           | 4.42 ± 1.07 | 2.99 ± 0.06           | 3.61 ± 0.25               | 0.18 ± 0.06     | 1.44 ± 0.44 | 3.88 ± 1.23 |

- 49 Tab. SI 6: Overview of operational parameters during investigation of current density. All
- 50 values obtained with DataView-Data Logger and aggregated for the duration of the
- 51 experiment. pH<sub>concentrate</sub> was not monitored during this experiment

|         | EC <sub>Conc</sub>            | ECDiluate       | pH <sub>Diluate</sub> | Current         | Current Density | Voltage      |  |
|---------|-------------------------------|-----------------|-----------------------|-----------------|-----------------|--------------|--|
|         | in mS/cm                      | in mS/cm        |                       | in A            | in A/m²         | in V         |  |
| Current | Current :0.8 A/m <sup>2</sup> |                 |                       |                 |                 |              |  |
| Run #1  | 9.36 ± 0.02                   | 1.00 ± 0.00     | 8.01 ± 0.05           | 0.10 ± 0.00     | 0.79 ± 0.00     | 5.44 ± 0.17  |  |
| Run #2  | 9.75 ± 0.02                   | 1.00 ± 0.00     | 8.04 ± 0.00           | 0.10 ± 0.00     | 0.79 ± 0.00     | 5.66 ± 0.01  |  |
| Current | 1.0 A/m <sup>2</sup>          | ·               |                       |                 |                 |              |  |
| Run #1  | 12.38 ± 0.04                  | 1.00 ± 0.00     | 8.03 ± 0.01           | 0.13 ± 0.00     | 1.02 ± 0.00     | 9.26 ± 0.08  |  |
| Run #2  | 9.96 ± 1.03                   | 1.53 ± 1.05     | 8.23 ± 0.16           | 0.13 ± 0.00     | 1.02 ± 0.00     | 7.76 ± 1.86  |  |
| Run #3  | 10.49 ± 0.03                  | 1.00 ± 0.00     | 8.03 ± 0.00           | 0.13 ± 0.00     | 1.02 ± 0.00     | 9.21 ± 0.17  |  |
| Run #4  | 10.58 ± 0.02                  | 1.00 ± 0.00     | 8.03 ± 0.00           | 0.13 ± 0.00     | 1.02 ± 0.00     | 9.53 ± 0.04  |  |
| Current | 0.9 A/m <sup>2</sup>          | ·               |                       |                 |                 |              |  |
| Run #1  | 10.68 ± 0.03                  | 1.00 ± 0.00     | 8.04 ± 0.01           | 0.11 ± 0.00     | 0.86 ± 0.01     | 8.76 ± 0.08  |  |
| Run #2  | 10.78 ± 0.01                  | 1.00 ± 0.00     | 8.03 ± 0.00           | 0.11 ± 0.00     | 0.87 ± 0.00     | 9.07 ± 0.02  |  |
| Run #3  | 10.85 ± 0.04                  | 1.00 ± 0.00     | 8.03 ± 0.01           | 0.11 ± 0.00     | 0.87 ± 0.00     | 9.39 ± 0.18  |  |
| Current | 2.0 A/m²                      |                 |                       |                 |                 |              |  |
| Run #1  | 10.93 ± 0.03                  | 1.00 ± 0.01     | 7.96 ± 0.07           | 0.25 ± 0.01     | 1.95 ± 0.05     | 20.21 ± 0.87 |  |
| Run #2  | 11.02 ± 0.04                  | 1.00 ± 0.00     | 7.96 ± 0.01           | 0.25 ± 0.00     | 1.96 ± 0.00     | 21.02 ± 0.14 |  |
| Run #3  | 11.10 ± 0.04                  | $1.00 \pm 0.00$ | 8.00 ± 0.02           | $0.25 \pm 0.00$ | 1.96 ± 0.00     | 21.54 ± 0.18 |  |
| Run #4  | 11.22 ± 0.02                  | $1.00 \pm 0.00$ | 8.03 ± 0.04           | $0.25 \pm 0.00$ | 1.96 ± 0.00     | 22.03 ± 0.09 |  |

53 Tab. SI 7: Recovery of analytes for Sartorius RC25 filters used in this study. Each matrix 54 was spiked with  $10\mu$ L of 1 ng/ $\mu$ L mixed reference standard and filtered through the RC25

|                         | Recovery in % |                 |  |
|-------------------------|---------------|-----------------|--|
|                         | tap water     | ultrapure water |  |
| 4/5-Methylbenzotriazole | 116.7(±9.32)  | 95.2(±2.65)     |  |
| Acesulfame              | 104.9(±6.75)  | 100.9(±2.94)    |  |
| Benzotriazole           | n.d.          | n.d.            |  |
| Carbamazepine           | 106(±9.07)    | 99.2(±4.45)     |  |
| Diclofenac              | 107.3(±11.3)  | 98.4(±1.53)     |  |
| Ibuprofen               | 106.2(±8.73)  | 97.3(±2.36)     |  |
| Lamotrigine             | 101.3(±9.15)  | 18.5(±8.26)     |  |
| Lidocaine               | 95(±10.08)    | 3.9(±3.54)      |  |
| Melamine                | 97.7(±7.2)    | 73.7(±6.31)     |  |
| Metformin               | 104.5(±6.77)  | 0.1(±0.11)      |  |
| Metoprolol              | 105.6(±8.54)  | 6.9(±5.51)      |  |
| Sulfamethoxazole        | n.d.          | n.d.            |  |
| Valsartan Acid          | 103.3(±11.38) | 94.9(±9.31)     |  |

Tab. SI 8: Recovery of inorganic compounds for Sartorius RC25 filters used in this study.
Each matrix was spiked with 10µL of 1 ng/µL mixed reference standard and filtered
through the RC25 filter. The filtered spiked matrix was compared against a reference that
was spiked and centrifuged (15.000 rpm) for 15min. Recovery experiments were
performed in triplicate.

|    | Recovery in %   |
|----|-----------------|
|    | ultrapure water |
| В  | 79.9(±5.1)      |
| Na | 99.3(±1.63)     |
| Mg | 98.6(±1.66)     |
| AI | 131.2           |
| К  | 102.2(±2.03)    |
| Ca | 97.9(±1.62)     |
| Cr | 97(±5.25)       |
| Mn | 100(±0)         |
| Fe | 104.4(±3.85)    |
| Со | 96.4(±6.3)      |
| Ni | 94.4(±4.81)     |
| Cu | 98.4(±0)        |
| Zn | 100.9(±4.02)    |
| As | 97(±5.25)       |
| Мо | 90.9(±0)        |
| Cd | 89.4(±1.89)     |
| Pb | 90.9(±0)        |

- 63 Tab. SI 9: Overview of isotope labelled standards spiked into the samples for the use as
- 64 internal standard. 10 μL were spiked into every 1 mL of sample volume. The target
- 65 concentration for all internal standards was 10  $\mu$ g/L.

| Isotopically labelled Standard | Used for matrix correction of |
|--------------------------------|-------------------------------|
| Benzotriazole-d4               | Benzotriazole                 |
| Metformin-d6                   | Metformin                     |
| 5-Methylbenzotriazole-d6       | 4/5-Methylbenzotriazole       |
| Lidocaine-d10                  | Lidocaine                     |
| Carbamazepine-d10              | Carbamazepine                 |
| Lamotrigine-13C-15N            | Lamotrigine                   |
| Valsartan Acid-d4              | Valsartan Acid                |
| Metoprolol Acid-d5             | Candesartan                   |
| Acesulfame-d4                  | Acesulfame                    |
| Ibuprofen-d3                   | Ibuprofen                     |
| Diclofenac-d4                  | Diclofenac                    |

Tab. SI 10: Overview on matrix effects during LCMS analysis. Matrix effects were determined by with the slopes of the concentration-response functions determined in ultrapure water compared to spiked concentrate, diluate and feed samples. When this comparison yielded non-interpretable results (i.e. negative matrix effects) the matrix effects were estimated based on the area of the associated isotopically labelled internal standard in ultrapure water compared to spiked concentrate, diluate and feed samples.

|                         | Matrix Effects in % |         |              |  |  |
|-------------------------|---------------------|---------|--------------|--|--|
|                         | Concentrate         | Diluate | Initial Feed |  |  |
| Metformin               | -23.5               | 12.5*   | -19.5        |  |  |
| Metoprolol              | -1*                 | -5.5*   | -2.5         |  |  |
| Acesulfame              | -6.5                | -14.5*  | -3.5         |  |  |
| Carbamazepine           | -4.5*               | -10*    | -9.5*        |  |  |
| Benzotriazole           | -9.5*               | -5*     | -10          |  |  |
| Sulfamethoxazole        | -5                  | -13     | -22.5        |  |  |
| Valsartan Acid          | -6*                 | -14*    | NA           |  |  |
| Lidocaine               | -8*                 | -13*    | -8.5*        |  |  |
| Lamotrigine             | -13.5*              | -36     | -31          |  |  |
| Diclofenac              | -17                 | -24.5   | -24          |  |  |
| Ibuprofen               | -24.5               | -20     | -45          |  |  |
| Candesartan             | -20.5*              | -28.5*  | NA           |  |  |
| 4/5-Methylbenzotriazole | -40                 | -49.5   | -65          |  |  |
| Melamine                | -82                 | -62.5   | -69          |  |  |

74

|             | Port    | ion in % |                     |
|-------------|---------|----------|---------------------|
| Time in min | A (H20) | B (MeOH) | Flow Rate in mL/min |
| 0.0         | 90      | 10       | 0.3                 |
| 0.8         | 90      | 10       | 0.3                 |
| 7.5         | 45      | 55       | 0.3                 |
| 21.0        | 5       | 95       | 0.3                 |
| 28.0        | 5       | 95       | 0.3                 |
| 29.1        | 90      | 10       | 0.3                 |
| 31.0        | 90      | 10       | 0.3                 |

76 Tab. SI 11: Gradient of liquid chromatographic separation method.

78 Tab. SI 12: MS-Parameters for all analytes, including isotopically-labelled internal 79 standards.

|                          | ESI- | Q1 in  | Q2 in | RT in | DP in | EP in | CE in | CXP in |
|--------------------------|------|--------|-------|-------|-------|-------|-------|--------|
|                          | Mode | u      | u     | min   | v     | V     | eV    | v      |
| Benzotriazole            | +    | 120.01 | 65.0  | 7.54  | 126   | 10    | 29    | 10     |
|                          |      | 120.01 | 91.9  | 7.54  | 126   | 10    | 23    | 12     |
| Benzotriazole-d4         | +    | 124.01 | 68.0  | 7.45  | 51    | 10    | 29    | 10     |
|                          |      | 124.01 | 69.1  | 7.45  | 51    | 10    | 33    | 12     |
| Melamine                 | +    | 127.01 | 85.3  | 0.84  | 71    | 10    | 23    | 8      |
|                          |      | 127.01 | 67.8  | 0.84  | 71    | 10    | 37    | 8      |
| Metformin                | +    | 130.06 | 59.9  | 0.92  | 66    | 10    | 17    | 6      |
|                          |      | 130.06 | 70.9  | 0.92  | 66    | 10    | 29    | 14     |
| Melamine-13C-15N         | +    | 133.06 | 89.0  | 0.82  | 31    | 10    | 25    | 10     |
|                          |      | 133.06 | 72.0  | 0.82  | 31    | 10    | 39    | 8      |
| 4/5-Methylbenzotriazole  | +    | 134.10 | 77.0  | 8.90  | 71    | 10    | 31    | 6      |
|                          |      | 134.10 | 78.9  | 8.90  | 71    | 10    | 29    | 10     |
| 5-Methylbenzotriazole-d6 | +    | 140.06 | 80.9  | 8.90  | 141   | 10    | 35    | 12     |
|                          |      | 140.10 | 84.9  | 8.90  | 71    | 10    | 29    | 10     |
| Lidocaine                | +    | 235.10 | 86.1  | 5.36  | 76    | 10    | 25    | 8      |
|                          |      | 235.10 | 57.9  | 5.36  | 76    | 10    | 47    | 8      |
| Carbamazepine            | +    | 237.04 | 194.1 | 10.90 | 106   | 10    | 25    | 6      |
|                          |      | 237.04 | 193.1 | 10.90 | 106   | 10    | 47    | 8      |
| Lidocaine-d10            | +    | 245.12 | 96.1  | 5.29  | 76    | 10    | 25    | 12     |
|                          |      | 245.12 | 64.1  | 5.29  | 76    | 10    | 57    | 6      |
| Carbamazepine-d10        | +    | 247.02 | 204.1 | 10.77 | 29    | 10    | 29    | 10     |
|                          |      | 247.02 | 202.0 | 10.77 | 56    | 10    | 47    | 10     |
| Sulfamethoxazole         | +    | 253.95 | 92.0  | 7.55  | 66    | 10    | 37    | 12     |
|                          |      | 253.95 | 155.8 | 7.55  | 66    | 10    | 21    | 16     |

|                    | ESI-Mode | Q1 in u | Q2 in u | RT in min | DP in V | EP in V | CE in eV | CXP in V |
|--------------------|----------|---------|---------|-----------|---------|---------|----------|----------|
| Lamotrigine        | +        | 255.99  | 211.0   | 6.38      | 91      | 10      | 39       | 4        |
|                    |          | 255.99  | 109.0   | 6.38      | 91      | 10      | 63       | 6        |
| Valsartan Acid     | +        | 267.00  | 151.0   | 11.08     | 71      | 10      | 55       | 18       |
|                    |          | 267.00  | 206.0   | 11.08     | 71      | 10      | 25       | 20       |
| Metoprolol Acid    | +        | 268.07  | 145.1   | 5.27      | 106     | 10      | 35       | 12       |
|                    |          | 268.07  | 226.1   | 5.27      | 106     | 10      | 23       | 28       |
| Metoprolol         | +        | 268.12  | 116.1   | 6.29      | 81      | 10      | 25       | 6        |
|                    |          | 268.12  | 191.1   | 6.29      | 81      | 10      | 25       | 4        |
| Metoprolol Acid-d5 | +        | 273.10  | 196.0   | 5.21      | 26      | 10      | 27       | 10       |
|                    |          | 273.10  | 150.1   | 5.21      | 26      | 10      | 35       | 16       |
| Acesulfame         | -        | 161.90  | 81.9    | 4.92      | -50     | -10     | -20      | -13      |
|                    |          | 161.90  | 77.9    | 4.92      | -50     | -10     | -40      | -13      |
| Acesulfame-d4      | -        | 165.87  | 86.1    | 4.87      | -25     | -10     | -20      | -7       |
|                    |          | 165.87  | 78.0    | 4.87      | -25     | -10     | -46      | -3       |
| Ibuprofen          | -        | 205.08  | 161.1   | 17.78     | -80     | -10     | -10      | -13      |
|                    |          | 205.08  | 159.1   | 17.78     | -80     | -10     | -10      | -13      |
| lbuprofen-d3       | -        | 208.04  | 164.1   | 17.73     | -50     | -10     | -10      | -11      |
|                    |          | 208.04  | 161.1   | 17.73     | -50     | -10     | -10      | -15      |
| Diclofenac         | -        | 294.00  | 250.0   | 17.41     | -40     | -10     | -16      | -13      |
|                    |          | 295.88  | 252.0   | 17.41     | -40     | -10     | -16      | -11      |
| Diclofenac-d4      | -        | 297.88  | 254.1   | 17.34     | -50     | -10     | -18      | -13      |
|                    |          | 298.85  | 255.0   | 17.34     | -45     | -10     | -20      | -13      |

82 Figures



Fig. SI 1: Elimination of micropollutants during nutrient recovery from nitrified wastewater. Data is based on unpublished research. Experiments for nutrient recovery spanned several months.

| Metformin-               | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99  | 95  | 65  | 60  | 50  | 83  | 98  |
|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Metoprolol-              | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 98  | 82  | 68  |     |     |     | 55  |
| Lidocaine -              | 100 | 100 | 100 | 100 | 100 | 98  | 85  | 64  |     |     |     |     |     | 63  |
| Lamotrigine -            | 93  | 95  | 95  | 94  | 84  | 56  |     | 99  |     |     |     |     |     | 91  |
| Carbamazepine -          |     |     | 100 |     |     |     |     | 100 |     | 100 | 100 | 100 | 100 | 99  |
| 4/5-Methylbenzotriazole- |     |     | 100 |     |     |     |     | 95  | 66  | 84  | 98  | 100 | 100 | 100 |
| Benzotriazole -          | 71  |     | 100 |     |     |     |     | 81  | 70  | 96  | 100 | 100 | 100 | 100 |
| Sulfamethoxazole -       | 76  |     | 91  |     |     |     | 87  | 99  | 100 | 100 | 100 | 100 | 100 | 100 |
| Ibuprofen -              |     |     | 99  | 88  | 58  | 93  | 99  | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| Acesulfame-              |     |     | 51  | 91  | 99  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| Diclofenac-              | 100 |     | 91  | 50  | 91  | 99  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| Candesartan -            | 76  |     | 74  | 74  | 85  | 58  | 93  | 99  | 100 | 100 | 100 | 100 | 100 | 100 |
| Valsartan Acid-          | 100 | 99  | 91  | 51  | 79  | 58  | 93  | 99  | 100 | 100 | 100 | 100 | 100 | 100 |
|                          | 1   | Ż   | 3   | 4   | 5   | 6   | Ż   | 8   | ģ   | 10  | 1'1 | 12  | 13  | 14  |
| Predicted Charge PH PH   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Main Specie              | s   |     | +   | -2  |     | +1  |     | 0   |     | -1  |     | -2  |     |     |

Fig. SI 2: Predicted charge of major species of compounds from pH = 1 to pH = 14 as predicted by ChemAxon. Red lines indicate the pH range under investigation in this study. Numbers represent percentages of the major microspecies present at the corresponding pH.



Fig. SI 3: Comparison of Concentrate/Diluate concentration ratios of inorganic reference ions for calculation of TE and phosphate during treatment of synthetic centrate (n = 10) at varying feed pH.



Fig. SI 4: Calculated Transport efficiency (TE) of micropollutants for electrodialysis treatment of synthetic centrate (n = 10). The feed pH was adjusted to pH<sub>feed</sub>-levels: 8, 7, 6, 4, 3.



Fig. SI 5: A) PCA across selected physical-chemical properties. B) Loadings of the principal components (blue) and corresponding physical chemical properties (red)



Fig. SI 6: Comparison of transport efficiency (TE) of micropollutants for treatment of synthetic wastewater and real nitrified centrate (n = 10). P-values for a pairwise t-test between TE with synthetic and centrate feed are provided. Both experiments included varying feed pH levels from pH = 8 to pH = 3.



Fig. SI 7: Comparison of Concentrate/Diluate concentration ratios of inorganic reference ions for calculation of TE and phosphate as well as  $P_{total}$  during treatment of synthetic centrate at varying feed current densities. While the experiments at 0.8, 0.9 and 1.0  $A/m^2$  were performed below the limiting current density. The experiment at 2.0  $A/m^2$  was performed at overlimiting current density.