Additional file 1

Lisa Fiedler, Matthias Bernt, Martin Middendorf, Peter Stadler

Additional File covering detailed information on the methods presented in the main manuscript, including alignment parameters
and branch length distributions, as well as additional tables and figures to predictions analyzed and discussed in the main text.

Handling linear genomes

For linear genomes, the breakpoint detection routine differs only slightly from the approach presented in the main manuscript.

After IPs and TPs are identified in the first step of the dislocation breakpoint routine, only IP-TP combinations where the IP
position annotations are smaller than the corresponding TP position annotations are used. This way, the genome bounds are not
passed by either of the branches. Thereafter, the algorithm can be carried out in precisely the same manner.

For the inversion breakpoint routine, broken bulges are not considered further where ps > pg or ps > pe.

Local sequence alighments

Parameters

For the local sequence alignments, an alignment matrix with match costs of 1 and mismatch costs of —2 was used. Moreover, gap
penalties of —2 for opening and extending a gap were applied. These settings are used as default settings in BLAST which assume 95%
of sequence conservation.

To render the quality of the sequence alignments comparable, the E-values of the resulting alignment scores were computed. For
an alignment with score S, the E-value is the expected number of alignments with score at least Si.e., the smaller the FE-value, the
higher the alignment quality. The cutoff E-value should be set based on the degree of conservation of the involved species. The E-value
computation involves statistical parameters A, K, H, which for gapped alignments must be inferred from simulated sequences. These
were computed by aligning a large number of random sequence tuples and recording their best scores S’ and alignment lengths I’. To
generate sequence tuples of representative sequence composition, long random sequences were generated by concatenating and shuffling
the sequences of all Metazoan species contained in RefSeq89 and then splitting them into sequence chunks of average genome length.
The maximum-likelihood method was then applied to estimate the desired parameters by assuming an extreme value distribution of
S’, as suggested by [2]. Alternatively, the sequences of the species involved can be used for this step. This might result in a slight
accuracy gain of the statistical parameters, however, also an increase in runtime by the amount required to compute these parameters,
where the computation of the alignment scores has the biggest impact as (expensive) sequence alignments need to be conducted. For
all of the experiments conducted in this study, using the sequences of the involved species had no impact on the produced results. This
is thus only advisable for atypical genomes. The parameters can also be supplied manually.

Banded alignments constrain the search space to a short band around the diagonal of the scoring matrix. A bandwidth of 40 nt
proved to produce good results in practice while allowing to greatly reduce the computation time, which is why this is used as default
value. Indeed, conducting a complete sequence alignment instead produced the same predictions in all experiments performed in this
study.

Aligning the flanking sequence blocks in step 4

To explain how the sequence segments are determined for the sequence alignment at the bulge flanks (step 4), consider BB B; of Figure
2 in the main manuscript. For this case, the alignment is triggered between r2 from pred(5, p) to pred(5,1) = 4 and r1 from pred(5, p)
to pred(5,1) = 4 for the left segment and between r, from pred(15, k) to pred(15,k + p) and r1 from pred(7,k) to pred(7, p) for the
right segment. The shift by k is because the position annotated on an edge refers to the last nucleotide of the (k + 1)-mer, not the
entire subsequence.

The flanking MSB s must consist of at least one gene of size | gmin |. We hence use flanking sequence blocks of the order of this
length, in detail p = | gmin | +20. The rational of using a slightly longer block is to account for the fact that the match quality generally
decreases in the vicinity of the gene boundaries and this region of low match quality tends to be wider for longer genes, such that
long genes might score too poorly to be identified. 20 additional nucleotides proved to produce good results, while still keeping the
sequences for the alignment at a moderate size and thus keeping the required runtimes for the alignments at bay.

The alignment is enforced to end at pred(5) in rp and pred(5) in r1 for the left alignment and start at pred(15, k) in r2 and pred(7, k)
in r1 for the right alignment, since the MSB s should directly adjoin the BB. Note that if p exceeds the collinear region at the flanks
to a small extent, sequence segments that go beyond this region will generally not be included in the resulting local alignment and in
particular the match quality is not degraded, as opposed to a global alignment.

Branch lengths

The precise length of the single-color branch depends on the degree of conservation between the genomes under consideration, the
presence of intergenic regions, and whether or not the genes involved in the BB and the two entangled BBs start or end with the same
encoding subsequence. If none of the above apply, the single-color branc is of length k and consists of transition (k + 1)-mer s where
the prefixes correspond to the last few nucleotides of the first breakpoint gene and suffixes correspond to the first few nucleotides of
the second breakpoint gene. Figure[S1]shows that some of such cases also occurred in the experiments of the synthetic dataset. It can
be observed that for low and moderate substitution rates most of the BBs have branches of length |bs] = k£ = 10. High substitution
rates result in a broadening of the peak towards longer branch lengths. None of the branches in the case studies had lengths smaller
than k. The corresponding branch length distribution is shown in Figure [S2}

lsup =— 1 =— 3 —=— 5 = 75

1000

900

800+

700+

600 -

500+

400+

300+

number of occurrence

200+

100+

single color branch length

Figure S1: Branch length distribution for the synthetic datasets. Shown are only branch lengths up to size 50.

case study - 1 - 2 - 3

10+

number of occurrence

i JX/YT/A/\/\ VI

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125130135140145150155160165170175180185190195
single color branch length

Figure S2: Branch length distribution for the dislocation case studies.

Algorithms of step 5

Like in step 4, only the first p vertices of the first and the last p vertices of the second putative two-color paths are considered.
We call the corresponding 72 subpaths P2 and P2, respectively.

Alignment anchor detection

Input: An r; reference path Prer, a genome 71
Output: A set P of 2-color paths of 1 and 72

E <+ list of all edges (v,v’,72,p) on Prer
sort F in ascending order with respect to p
foreach e = (v,v’,r2,p) in E do
M « retrieve set of matching edges (v,v’,r1,p’)
if M = then
remove e from E
L continue

T N TN R R

[*]

L] < set of positions in M in ascending order
9 § + {succ(p’, 1) for each p’ in L}

10 // Mark edges in E with collinear successor

11 for i< 1to |E|—1do

12 | if £ = £777Y then mark Ei]

13 R < empty list

14 // Remove unmarked edges following a block of marked edges
15 for i <+ 2 to |E| do

16 L if not marked(E[:]) and marked(E[i — 1]) then append EJi] to R

17 E < E with entries in R removed
18 // Compute group identifier
19 for i < 1 to |E| do
20 | d[i]+p—1
d'[i] « c¥[1) -
22 // Group entries in F with equal values of (d,d’) retaining their order
23 G+ 0
24 G < empty list
25 for i < 1 to |E| do

21

26 | append (E[i], Efm, L‘ZEM) to G

27 if d[’i+1] #* d[Z] or d/[i+1] #* d/[’L] then // start new group
28 G+ GU{G}

29 L G + empty list

30 P+ 0

31 foreach G in G do

32 if marked(G[]]) then // all elements of G are marked
33 // In this case L is of same size for all elements in G

34 for i < 1 to |getL1(G[1])| do

35 P, < (r2, getP(G[1]), succ(getP(G[-1]), 1))

36 Pry + (11, getL1(G[1D[d], getL2(G[-1D[1])

37 P+ PU {]‘_’r27 Prl} // add 2-color path to result set
38 else // no element of G is marked
39 foreach ¢ in G do

40 for i < 1 to |getL1(g)| do

a1 P,, + (r2,getP(g),getP(g))

42 P, + (r1,getL1(g)[i], getL1(g)[¢])

43 P+ PU {137«2 R Pn} // add 2-color path to result set

44 return P
Algorithm 1: Identifying 2-color paths

To determine whether the corresponding r1 subpaths exist and, if so, whether homologous regions are present, we use Algorithm
The procedure is applied independently to the paths P2 and P2, unless b, is shorter than |Pal| + |P32| +2p, i.e., if the two paths overlap.
This is the case if (different from the situation in BB Bj) there is only a single MSB on b,. Then, both paths are combined into a
single path P34, which contains the overlapping edges only once, and Algorithm [1]is applied to the combined path P34

The general idea is to create alignment anchors on the 72 reference paths Prer € {P2, Py, P3*} by combining consecutive (k -+ 1)-mer
matches of 71 using a local sorting strategy. Given an input reference path Prct, the algorithm first retrieves all matching (k + 1)-mers
of 71 along this path (line[4) and discards all of r2’s edges without matches (line @ For each of the remaining edges e of r2, which are
stored in ascending order in a list E, an ordered set L] of the positions of matching (k + 1)-mers is generated (line , along with a
second set Lo consisting of the succeeding positions stored in L§ (line E[) For instance, in the example scenario depicted in fig. two
r1 edges with positions 44 and 249 match at r2’s edge E[1], resulting in sets £§ = {44,249} and L5 = {45,250}. If LS = L5 for two
consecutive edges e and €’ in F, the edges are collinear with the sequences of matching 71 edges at e and e’. This is the case for above

‘9 01 GG woI douenbasqns s, I YHM puR ‘LGz 0} LFZ WOoIj aduanboasqns s, T YHIM ‘GG
09 zF woy eouenbesqns s T YIIM PajoNPUOd SNYY o8 ()] 0F T WLIOJ 90uanbosqns § 2. JO SJUSWUSY "W} JO Yoes I0J pojnduiod aIe $8)epIpued JUSWUSI[R ‘9aI() JO [ISUS] oUIes oY) dARY
[Te £97) 9ouIg "quoj ploq pal ul parySiySty ore syred 1soS8u0] om) Yy pue ureryd 1soSuo] YT, [g] wIIoSTy £q pajerouss ore sureyd omj ‘syjed I0J00-g 9SO USAIY) “OUI[PI[OS OYI MO[I]
paasty QEH w1087y £q yndino are yoryMm stred 10[0o-g Surynsal oy, ‘seSpe () peyrewun Io (ur) peyIewt Jo ATUo $)s1su0d dnois oty Iolaym seyads odAy oy, 'p 10 ‘O‘q‘e IoYIUaPI
oures o) UM Pafoqe] o1t dnoid aures o) 0} poudIsse oIe JeY) . JO S9SPd SAIINIASUO)) “4f ISI[Ul PoAouIal usaq Apeaie aary ‘{) ‘¢ ‘1} O d yim so8po s, 2.4 Surstadwiod ‘T Jjo stow-(T + y)
suryojewr MOYIM 2. JO Se3pH m WHLIOZ[y SUuISn $9)epIPURD JUSTWUSI[R JO UOIRISUSS vgﬁﬂ w08y Sutsn (T ‘T ‘%4) 1ed 1070d oySurs ndur ue 10J syjed I0[00-g JO UOTYRIYIIUAP] :€Q oInS1q

({(16°16 ‘%) ‘(01 ‘01 ‘24) } “{(06 06 ‘™) ‘(66 ‘@4)}) ({(19 ‘19 “T) (88 %)} {(09 ‘09 ‘Tt) “(9°9 ‘Zu)}) - - suret
{(¢6 66 “1t) (66 ‘e4) } {(zgz ‘67T ‘T4) ‘(g g cu)}

{(16°16 ‘1) ‘(01 ‘01 ‘24)} {(06°‘06 ‘1+) ‘(66 ‘%4)} {(19°19° ™) (8°8 ‘%) } {(09°09 ‘1) “(9°9 ‘@) } - {2y P Te) ‘(gég‘Fa)} styyed 10[00-,

n n n n - w w ad Ky

p P 2 q - e ® dnoa8

78 78 96 g - ey ey P

€ € e z - é é p

A A A A A A doox

2 2 poyIew

{z6} {9616} {z9} {19} {zsz ‘Lv} {152 ‘o%} {osz ‘sv} ¢y

{16} {g6°‘06} {19} {09} {1cz ‘ov} {o0gz ‘sv} {6V v} 7

0T 6 8 9 G 14 e ¢4 ut d uoryisod

P 9 g i € ¢ T H Ul Xopul

®
pl =113 pl =138

Figure S4: Linear extension of an anchor point {(r2, 23, 48), (r1,113,138)} for an input reference path (72, 10, 60). The resulting position
array of r1 that would be output by Algorithm is [100,150]. In the subsequent alignment, r2’s subsequence from position
10 to 60 would be aligned with r1’s subsequence from position 100 to 150.

edge E[1]. Edges E[1] and E[2] are thus collinear to two sequences of matching edges, the first sequence comprised of two 1 edges with
positions 44 and 45 and the second one of two r1 edges with positions 249 and 250. The algorithm marks such edges E[i] with equal
sets L1 and Lo (line . Blocks of consecutive marked edges are part of the same collinear region. These are thus grouped together
(lines , and a two-color path for each collinear sequence of matching (k + 1)-mers is output by the method (lines . Above
edges E[1] and FE[2] are part of such a collinear region, yielding 2-color paths {(r2,3,5), (r1,44,47)} and {(r2,3,5), (r1,249,252)}.
Consecutive unmarked edges indicate different independent collinear regions so that the algorithm outputs individual two-color paths
for each of them. All remaining two-color paths of fig. [S3| are created this way.

Input: A set P of 2-color paths P = {(re,p2,p2), (r1, ps, pt)} for a reference path (ra,p?, p>)
Output: A set of alignment candidates A

1 Acadj — @

2 foreach P in P do

3 | foreach P in P do

a if distance(p?(P),p?(P))< k + 1 and distance(p}(P),pl(P))< k + 1 then

5 L ﬁadj <~ Eadj U {(P7 P)} // add to adjacency list
6 S+ {(P7 jj) S »Cadj | ﬂ(Plyp) S Eadj} // no predecessor exists
7 £adj — ﬂadj \S

8 do

9| &+ S
10 // remove elements that have been visited before
11 | Lagj + {(P',P) € Lag; | B(P,P) € S}
12 // create chains of 2-color paths

13 | foreach (P,P) in S do
14 foreach (P', P") in L.q; with P’ = P do
| S« S\ {(P,P)})u{(P,P")}

16 while S’ # S
17 C 4 argmax p p)c s distance (P2(P), p2(P)) // select longest chains

15

18 T argmaXxpep distance(pz (P), pz (P)) // select longest input 2-color paths
19 dc¢ < length of chains in C

20 d7 < length of paths in T

21 AP+ ()

22 // Select longest chains or input 2-color paths as anchor points AP
23 if de < dy then AP« T

24 else if dc > dr then AP« {P|(P,P)ecC}

25 else AP+ TN{P|(P,P)ccC}

26 A« ()

27 foreach P = {(re,p2,p2), (r1,pi, pt)} in AP do

28 | p} « pred(pl, distance (p?,p?))

29 L A «— AN [p},p} + distance(p?,p3)]

30 return A
Algorithm 2: Combine 2-color paths

Alignment anchor chaining

A point mutation distinguishing r; and re in general results in k + 1 unmatched edges in the de-Bruijn graph (cf. Figure 3 of the
main manuscript). As a consequence, there may be multiple separate 2-color paths that are output by Algorithm which are actually
part of the same homologous region. Considered on their own, these individual paths may, because of too short path lengths, not be
sufficient indicators for homology.

Thus, Algorithm creates chains of two-color paths that cover as much of the reference path Pref =: (72, p7, p>) as possible. Initially,
all 2-color paths are paired that are separated by a distance of at most k + 1, creating an adjacency list (lines . These pairs are
chained as long as possible, only storing the first and last pair of the chain (lines . This is the first time a path traversal is
required. However, given that paths of (k 4+ 1)-mers rather than single (k + 1)-mers are used to form the chain, and the region to be
covered has a maximum length of p, this traversal requires only very few iterations. In fact, in the course of the study, fewer than ten
iterations were needed in most cases.

The longer the chain, the larger the portion of the input path that is covered by the chain, and the more likely it is that the chain
corresponds to a homologous region. Hence, only the longest chains are selected as anchor points (lines[17| and . Some of the input
2-color paths may not have been included in the adjacency list as there is no other sufficiently close 2-color path. However, these paths

might on their own be longer than the longest of the identified chains. In such a case, the longest of these unchained paths are used as
anchor points instead (line . If the longest unchained paths and the longest chains are of the same length, both are used as anchor
points (line . This is the case in the example of fig. The affected paths and chains are highlighted in bold red font. Lastly, the
anchor points are linearly extended to cover the input reference path (rs, P2, pQT) completely (lines . An example is illustrated in
fig. 54

The position ranges of r1 resulting from such an extension are the final output of the algorithm. They determine the locations of
the subsequences of r, which are used in a subsequent banded local sequence alignment with r2’s subsequence from p? to p2 (for an
example confer fig.|S3)). Duplicate subsequences of 1, which may be present due to repeats, are aligned only once to save computation
time. The considered BB candidate is discarded if there are only low-quality alignments. Otherwise, all of its good-quality alignments
are regarded as homologous regions.

Shifted breakpoint bulge candidates

At the end of step 6, there may still be shifted BB candidates contained in the set of remaining candidates. Consider Figure [Sb}
Sequence inconsistencies within gene g» result in an inconsistency bulge (cf. Figure 3 of the main manuscript) between vertices v,
and vg. This may result in two candidates for breakpoint (g1,92)2,1. One of them is the correct BB B between vertices v, and vp.
The second one is a spurious candidate B’ between vertices v, and v4. Such an incorrect candidate emerges if the following two
conditions are met. First, the alignment quality on the right flank of B’ (step 4) is sufficiently high because the inconsistency region
is close enough to the start of g» so that only a small portion of gs is missing in the alignment. And second, the distance between
vy and vy is small enough for reference path P2 of step 5 to start somewhere in between v. and vy and terminate at v. so that the
corresponding local sequence alignment would encompass the small region between vy and v, with gaps or mismatches, but still yield a
decent alignment score. Usually, B’ would be discarded in such a case in step 6, due to the overlap of its “branches” bs and b, between
vp and v.. However, since this region between v, and v. is very small, the corresponding alignment generated at the end of step 6 may
not be sufficient to detect this region as homologous.

Figure S5: Formation of a shifted bulge caused by an inconsistency bulge close to the end of gene g2. In addition to the correct
candidate between v, and vy, a second spurious candidate between v, and v4 exists for the BB of breakpoint (g1, g2)2,1 at
the end of step 6.

Impacts of the (k + 1)-mer size on the runtime and result accuracy

Generally, an approximate exponential growth of the runtimes can be expected for decreasing values of k. This trend can also be
observed for the three conducted dislocation breakpoint experiments, as shown by Figure[S6} which shows the required scaled runtimes
for decreasing values of k. The smallest k& value per experiment was chosen so that runtimes of one hour were not exceeded.

casestudy - 1 - 2 - 3

1.0+

0.9

0.8+

0.74

0.6

0.51

scaled time

0.4+

0.3+

0.2+

0.14

0.0+ . y T T
16 14 12 10 8

k

Figure S6: Scaled running times of the dislocation breakpoint case studies for decreasing values of k. The scaled runtimes are given as
the required runtime for a set of genomes (case study 1, 2, or 3) and value of k divided by the longest runtime for this set
of genomes among all values of k.

A smaller value of k does not necessarily improve the accuracy of the results. This is because lowering the (k+1)-mer size also increases
the number of random matches between unrelated sequence segments. Thus a compromise between a too-large value, concealing many
sequence similarities among the genomes, and a too-small value, cluttering the graph with many random matches must be found. To
automate the process of deciding on a suitable value for k, an automatic computation routine can determine this value at the start of
DeBBI. Figure [S7] summarizes the result quality for the different k values by means of empirical distribution functions of distances of
identified to putative breakpoints. It demonstrates that in most cases, the automatic routine selected k£ so that the largest number of
breakpoints could be identified. These choices also avoided long runtimes, as can be seen in Figure [S6]

casestudy @« 1 « 2 « 3 kO 8 O 10 A 12 & 14 v 16 selected —- f — t

=
o
:

o
©
.

o
o)
A

o
N
:

|
:
I
I
I
I
I
I

o
o
f

©
>

o
w
A

rate of identified breakpoints
o
6]

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
distance [nt]

Figure S7: Empirical distribution functions (EDFs) of distances of identified to putative breakpoints, normalized to the total number
of putative breakpoints for the dislocation breakpoint case studies and various values of k. The EDFs for the k values that
were selected by the automatic computation routine are displayed as solid lines.

Computing collinear blocks

The breakpoint locations can in principle also be used to compute collinear blocks. In detail, the sequence segment between two
successive breakpoints in one sequence forms a collinear block with the corresponding sequence segment in the other sequence. For
instance, consider the two consecutive breakpoints (g2,g3)1,2 and (g4, gs)1,2 shown in Figure In this case, the corresponding
collinear block is formed by the sequence segment from positions 20 to 39 in 71 and the sequence segment from positions 10 to 29 in
ro, corresponding to the two consecutive genes g3 and g4. If, as is the case in this example, all breakpoints have been identified, all
collinear blocks can be constructed in this way. In this example this would result in three collinear blocks.

However, in the course of the method execution, some of the actually correct breakpoints (g:, g;)1,2 might get discarded because one
of the flanking genes g; or g; is not sufficiently conserved to be distinguished from random sequence matches. However, of the two
entangledbreakpoints, breakpoint (gi, gm)2,1 could still be retained if only g; is not sufficiently conserved and breakpoint (gn,g;)2,1
could still be retained if only g; is not sufficiently conserved. Consequently, there will be some inconsistencies, in the form of overlaps,
between the collinear blocks computed as described above. A most consistent set of collinear blocks can be derived by computing all
collinear blocks from the breakpoints of 71 with respect to r2 and computing all collinear blocks from the breakpoints of r2 with respect
to r1 and outputting only the blocks that are contained both times.

-101d qurodsesiq sjdurexy :gG oIn3r g

[3u] swousb
6V 8 L¥ 9V Sv ¥¥ €V T¥ T¥ Ov 6E 8E LE 9E GE ¥E €€ TE TE 0E€ 6C 8T LT 9T ST YT €2 TZ TCOZ 6T 8T LTI ST YT ETCITIIOL 6 8 L 9 S v € T I 0

= e
«Q Q
N w

«Q
&)

_: ...

Q
n

6

julodyeaiq Jo pus ----

julodyealq jo ueys — uoibas jujodyealq ——

Taxonomic Trees

Bilateria
Deuterostomia Protostomia
Chordata spiralia Ecdysozoa
Craniata
Vertebrata Mollusca Arthropoda
s
Teleostomi Coleoidea Pancrustacea
Euteleostomi Neocaleoidea Hexapoda
Actinopterygii Decapodiformes Insecta
Actinoptert Sepiida Teuthida Dicondylia
Neopterygii Sepiina Myopsina Pterygota
Teleostei Sepildae Loliginidae Neoptera
Osteoglossocephal Sepia Sepioteuthis Holometabola

Sepia esculenta Sepioteuthis lessoniana

Clupeocephala taxiD:31210 taxID:34570
NC_009690 NC_007894
Euteleosteomorpha Nematocera
Neoteleostel Ptychopteromorpha Psychodomorpha
Eurypterygia Tanyderidae Trichoceroidea
Ctenosquamata Protoplasa

Protoplasa fitchii
taxID:560777

Acanthomorphata Paracladura
NC_016202
Paracladura trichoptera
Euacanthomorphacea taxID:1111055
NC_016173
Percomorphaceae
Eupercaria

Eupercaria incertae sedis

sillaginidae

sillago

sillago aeolus Sillago sinica
taxiD:490287 taxiD:907714
NC_025935

Figure S9: Taxonomic tree of species of the gene dislocation

experiments.

Clupeocephala

Otomorpha Euteleosteomorpha
Ostariophysi Neoteleostei
Otophysi Eurypterygia
Cypriniphysae Ctenosquamata
Cypriniformes Acanthomorphata
Cyprinoidei Euacanthomorphacea
Cyprinidae Percomorphaceae
Acrossocheilinae Crossocheilus Anabantaria
Crossocheilus siamensis
Onychostoma taxID:711521 Anabantiformes
NC_031827
Onychostoma macrolepis
taxID:369639 Channoidei
NC_023799
Channidae
Channa

Channa marulius
taxID:205123
NC_022713

Figure S10: Taxonomic tree of species of the gene inversion experiment.

Syntethic datasets

Table summarizes the mean (k + 1)-mer match rates and (k + 1)-mer inversion match rates that were measured for all rates of
substitution rsup of the synthetic data set. The table does not display (k + 1)-mer match rates for the different gene orders since
they coincide for the same value of 75,1, when rounded to two decimal places. This is because gene rearrangements only affect the few
transition (k + 1)-mers involved in a breakpoint so that the number of introduced gene dislocations hardly impacts the (k + 1)-mer
match rates.

Table S1: Average (k + 1)-mer match rates and (k 4 1)-mer inversion match rates for the different substitution rates reub. This serves
as means to compare the level of sequence similarity of the simulated data sets with the level of sequence similarity of real
genomes.

T'sub 1 3 5 7.5
mean pairwise match rate 0.79 052 034 0.15
mean inversion match rate [%] 71.0 44.0 23.0 2.0

Gene orders

Gene orders of dislocation case study 1 (Sillago)

NC_030373

F rrnS V rrnll L2 nadl T-Q M nad2 W -N -A -C -Y cox1 -S2 D cox2 K atp8 atp6 cox3 G nad3 R nad4l nad4 H S1 L1 nad5 -nad6 -E
cob T -P

NC_ 025935

F rrnS V rrnll L2 nadl T-Q M nad2 W -A -N -C -Y cox1 -S2 D cox2 K atp8 atp6 cox3 G nad3 R nad4l nad4 H S1 L1 nad5 -nad6 -E
cob T -P

Gene orders of dislocation case study 2 (Decapodiformes)

NC_ 007894

cox3 nad3 -S2 -cob -nad6 -P -nadl -Q K S1 nad2 coxl -C -Y -E N cox2 -M R -F -nad5 -nad4 -nad4l T -L2 -G I -rrnL -V -rrnS -W A
D atp8 atp6 -H -L1

NC__009690

cox3 K A R S1 nad2 cox1 cox2 atp8 atp6 -F -nadl -L2 -L1 -rrnL -V -rrnS -C -Y -Q -G N I nad3 D -nad5 -H -nad4 -nad4l T -S2 -cob
-nad6 -P -M -W -E

Gene orders of dislocation case study 3 (Nematocera)

NC_016173

-C -Y coxl L2 D cox3 G A S1 nad6 S2 -rrnL -rrnS M nad2 W I cox2 K atp8 atp6 nad3 R N E -F -nad5 -H -nad4 -nad4l T -P cob
-nadl -L1 -V -Q

NC_ 016202

I1-Q M nad2 W -C -Y cox1 L2 cox2 K D atp8 atp6 cox3 G nad3 A R N S1 E -F -nad5 -H -nad4 -nad4l T -P nad6 cob S2 -nadl -L1
-rrnLL -V -rrnS

Gene orders of inversion case study

NC_ 022713

F rrnS V rrnLl L2 nadl T-Q M nad2 W -A -N -C -Y cox1 -S2 D cox2 K atp8 atp6 cox3 G nad3 R nad4l nad4 H S1 L1 nad5 -nad6 -E
cob T P

NC_ 023799

F rrnS V rrnll L2 nadl I-Q M nad2 W -A -N -C -Y cox1 -S2 D cox2 K atp8 atp6 cox3 G nad3 R nad4l nad4 H S1 L1 nad5 -nad6 -E
cob T -P

NC_ 023799

F rrnS V rrnll L2 nadl I -Q M nad2 W -A -N -C -Y cox1 -S2 D cox2 K atp8 atp6 cox3 G nad3 R nad4l nad4 H S1 L1 nadb nad6 -E
cob T -P

Rearrangement scenarios computed by CREx

NC_025935 » NC_030373

« family diagram for NC_025935 (e}

([0 | 9 el []]]

diagram for NC_030373 (e)

[[0 el o [F]

« strong interval tree for NC_025935

EEEAEE

= R B EED

AEAEE

= R B EED

ol
‘ C NA-W-nad2 -M Q -l -nadi1 -L2 -rrnL -V -rmS -F P -T -cob E nad6 -nad5 -L1 -S1

-H -nad4 -nad4l -R -nad3 -G -cox3 -atp6 -atp8 -K -cox2 -D S2 -cox1 Y |

BB] [[3] [+ [+ [#] 1 [+ [1] 3] [+ T3] [+ [+] [+] [+ [# [+ [+ + + #]] [+ [+ 2 2 Y I 3 I 5 R Y
(clinlall-wil-nadz]-milal] -nadi] -2l e vl rms] [l P]|-7l[-cob [ElInade -nads] L] -5 1] -+l [-nad]-nad4il|-Rl [-nadal |-G |-coxal -atpel -atps -] -coxel-Dlls2]Feox]]

« strong interval tree for NC_030373

|
‘ C AN-W-nad2-MQ -l -nad1 -L2 -rrnL -V -rmS -F P -T -cob E nad6 -nad5 -L1 -S1 -H -nad4

-nad4! -R -nad3 -G -cox3 -alp6 -atp8 K -cox2 -D S2 -cox1 Y |

—

l
[+] [+] [+] [+] [+] [+] [+] [+] [+] [+] [+] [+] [+] [+] [+] [+] [+] [+ [+ [+
cl(al[nlFwl[nadz] vl ol [1] Fnadi] L2 Frent] v [rms] [[P 1] oot (€l nade] L1][-s1][H[-nad4] [-nacail[R] -coxd||-atp6 -cox2][-Df[s2][-cox1][v]
scenario:

Figure S11: Rearrangement scenarios using common intervals in CREx [3] for first dislocation case study.

NC_009690 - NC_007894

« family diagram for NC_009690 (e}

HEE

« family diagram for NC_007894 (e)

« strong interval tree for NC_009690

[F] Frect] Fi]]

FS) 9 5 1 (5] 1][l e (3 [o el] i |

M= HEE e EE 0

=
‘ cox3 KA R S1 nad2 cox1 cox2 atp8 atp6 -F -nad1 -L2 -L1 -rrnL -V -rnS -C -Y -Q -G N I nad3 D -nad5 -H -nad4 -nadd4l T -S2 -cob -nad6 -P -M -W -E |

[

(KAR S1nad2cox1cox2 atp8 atp6 -F -nad1 -L2 -L1 -rrnL -V -rmS -C-Y -Q-G N Inad3 D -nad5 -H -nad4 -nad4| T -S2 -cob -nadé -P -M -W -E)

[[5] +] [
m H cox1| cox2

« strong interval tree for NC_007894

‘ cox3 nad3 -S2 -cob -nadé -P -nad1 -Q K S1nad2coxi -C-Y -E Ncox2-MR -F -nad5 -nad4 -nad4/T-L2 -G | -rmL -V -rrnS -W A D atp8 atp6 -H -L1

(nad3 -S2 -cob -nadé -P -nad1 -Q K S1 nad2 cox1 -C -Y -E N cox2 MR -F -nad5 -nad4 -nad4lT-L2-G | -l -V -mnS -WA D atp8 atp6 -H -L1)

0 — T
-52 -cob -nads -P -nadd -naddl T

] L] L] L1 (] [+] [+ [+] [+ [+]

[+] [+] [+] [+] [+] [+] [+] [+] _ [+] [+]
lcoxallnada]-s2] -cobl [-nads]|-Pl|-nad1]|-cl] [s1]lnadzl cox1]|-c |-l £ In]kcoxal [:w[F][-F] |-nads] -nad4] [nad4il 7l -2 |-Gl

* scenario:

[+] [:] [+]

[1 [+

Figure S12: Rearrangement scenarios using common intervals in CREx [3] for second dislocation case study.

NC_016202 -+ NC_016173

« family diagram for NC_016202 (&)

[[rms] [eond [Frade] [s1] [

« strong interval tree for NC_016202
[+]

| C -W-nad2-MQ-IrmSV L L1 nadi -S2 -cob -nad6é P -T nad4l nad4 H nad5 F -E -S1 -N -R -A -nad3 -G -cox3 -atp6 -atp8 -D -K-cox2 -L2 -cox1 Y |

(-W-nad2 -MQ -IrmS V rmL L1 nadi -S2 -cob -nadé P -T nad4l nad4 Hnad5 F -E -S1 -N -R -A -nad3 -G -cox3 -atp6 -atp8 -D -K -cox2)

+]

« strong interval tree for NC_016173
[+]

| C QV Linadl-cob P -T nad4l nad4 H nad5 F -E -N -R -nad3 -atp6 -atp8 K -cox2 -1 -W -nad2 -M rrnS rrnl -S2 -nad6 -81 -A -G -cox3 -D -L2 -cox1 Y

(C_QV L1 nad? -cob P T naddl nad4 Hnad5 F -E_-N -R -nad3 -atp6 -atp8 K cox2 | W -nad2 -MrmS mnl -S2 -nad6 -S1-A -G -cox3-D)

1 [[+
@ -L2||-cox1][Y]

* scenario:

Figure S13: Rearrangement scenarios using common intervals in CREx [3] for third dislocation case study.

NC_022713 -+ NC_031827

« family diagram for NC 022713 (e)

« strong interval tree for NC_022713
[:]

| FrrnS V oL L2 nadi | -Q M nad2 W -A -N -C -Y cox1-S2 D cux2 K at8 at6 cox3 G nad3 R nad4l nad4 H S1 L1 nad5 -nad6é -E cob T P |

] 1] I'I?HJH Gl Gl [+] (o] [l [el el [ef [+l [el o] 0+l fe] T¥] [+] I'IIII'IH
I]EMMEIE[EE!MB

« strong interval tree for NC_031827

ol
| FrrnS V ol L2 nad1 | -Q M nad2 W -A -N -C -Y cox1-S2 D cox2 K at8 at6 cox3 G nad3 R nad4l nad4 H S1 L1 nad5 nad6 -E cob T -P

] T T
cox2 mlmm [nads][nads||-€]|cab]iT] -P|

NC_023799 —» NC_022713

+ family diagram for NC_023799 (e)

| Cees] (M L] (2] L] (] 0l [M] Crod] (] A]]

« family diagram for NC_022713 (e}

| L] [L] 2] Lol]]] (o] (] B (W]

« strong interval tree for NC_023799

L] (7] [nad] [nac]] [52] [3] [e] Fraae] Fe] [cot] (1]]
Crec] [Cnadal [reda] [+] (51 [c1] [res] [rode] [<] (e [[7]

El=
Elz=

=1
\ F rrnS V. rnL L2 nad1 | -Q M nad2 W -A -N -C -Y cox1 -S2 D cux2 K at8 atS cox3 G nad3 R nad4l nad4 H S1 L1 nad5 -nad6 -E cob T -P

L =] n'nﬁ’nnnnnnnnnnnnnnnnnnn EENCRORCERCENNCENC N ON R
I]!MI!!JIEE!HEEBE

« strong interval tree for NC_022713

=
\ FrrnS V rrnlL L2 nad1 | -Q M nad2 W -A -N -C -Y cox1 -S2 D cox2 K atB atB cox3 G nad3 R nad4l nad4 H S1 L1 nad5 -nad6 -E cob T P

« scenario:
reversal

NC_023799 - NC_031827

« family diagram for NC_023799 (e)

« strong interval tree for NC_023799
[+]

| FrrnS VmnL L2 nad1 | -Q M nad2 W-A -N -C -Y cox1 -S2 D cux2 at8 at6 cux3 G nad3 R nad4l nad4 H S1 L1 nad5 -nad6é -E cob T -P |

. strung mterva\ tree fm Nc_ﬂz1sz7
[+]

| FrrnS V ol L2 nad1 | -Q M nad2 W -A -N -C -Y cox1-S2 D cox2 K at8 at6 cox3 G nad3 R nad4l nad4 H S1 L1 nad5 nad6 -E cob T -P

ooy T Fl T =T I
FlFensl o] 2 cox2 mlmm nads| nads|[-E/[cobl [T][-P

* scenario:
= reversal

Figure S14: Rearrangement scenarios using common intervals in CREx [3] for inversion case study.

‘squtodyearq oatyeInd 9Y) JO AUR [YIIM POIRIDOSS® 9(J0UURD
1Rt syutodyesiq o1 ‘syurodyealq 109II00UI OM) SOSNRD 1919 9], "SHUSWIFS PAUSI[R A[SNIOUOLIS IO ‘STUSWISes aousnbas pausdieun Suo] Aq pesned axe sjurodsyealq passIy ¢ Apnjis ase))
"SHUOMISes oouanbos poudieun 3uo] Aq pesned ore sjurodyeslq PossIl oY) JO [[Y "IO[0D dWIRS O} USAIS oI€ SYOO[(IRSOUI[[0D PaJR[oYy :g APNIS Sk OWOUSS PUOIDS O[] UI SUI[[ROILIOA
pue 9811y oY) Ul Xoq ' Aq pajesrpul are suoriod pausife oy, ‘(10[d 9SIy oY) UI pajejoutr) pausife ST N VNI A[UO se ‘9sed sIy} Ul passi are sjutodsealq oy], ‘ApNIs osed SIf oY) 10]
UMOTS oI SIUOUISIS 20UaNDas yuesd[al oy} A[u() :T Apnjs ase)) ‘mAISAS Surmala s,aanepartssaxS8oxd Aq PoIeIOUSS ‘SOIPNIS 9SBD UOIFRIO[SIP 9917} 91} I0] sjuowudie aaneyastssaidoad :gTg oInS1

20zt

‘ iy

941 00911 00744 00014 0080} 0030} 0070} 00204 00004 0085 009—UTFG 00Z6 0006 0088 0098 00§ 00Z8 0008 00BL 009. 00y O0GL 000L 0033 0099 00$9 0029 0009 00BS 005 005 002 00DS UUEr—008e—00F 00Zr 000y ODGE 003¢ 00E 002 00D 0082 0092 002 00ZZ

0009} 0085+ 0095} 0095} 00754 00054 0081 009%4 00%¥} 00Zv+ 00Qv} 00EL 009EL 00%E} 00ZEF 000EF 00FZ T 00zh 0004 008 009 00Y 002

T sL19L

it bttt U ol U 8 oot b i A Al

009} 0085+ 0095+ 00¥S) 00254 0054 0081 009%4 00%¥} 00Zps 00Qv} 00EL 009EL 00YEL 00ZEL 000EH 009Z} 0092+ 0052} 002+ 000ZH 00844 00944 00FHH 00744 000} 00§04 00904 0050 00Z04 0000 0086 0036 0036 00Z6 0006 0088 0098 00p8 00Z8 0008 00FL 009, 00yL 00z 00DL 0089 0099 00y9 0079 0009 008S 009S 00y 00ZS 00DS 008y 003y 00p» 0OZ¢ 000y 008 009E 00PE 00Z6 00DE 0082 0092 00y2 00zz 000Z 00FH 0094 00pb 00z 000+ 008 009 00 002

0696

0099} 0095+ 00:

68L

Wit {%%%%%%?iié

1991 0099} 00294 009} 0085+ 0095+ 00554 007G} 000} 0087} 009¥} 00%¥4 00Z7} 000¥+ 008EH 009EL 00YEL 00ZEH 00QE} 00824 00924 00524 00224 0002} 004} 00944 00744 00744 0004+ 0080+ 0090} 00K04 00304 00004 0086 0036 006 0026 0006 0088 0098 00y8 00Z8 0008 008. 009 00y. 007, 000L 0089 0099 0059 009 0009 008S 0095 00pS 0025 0005 008 0095 00p» 00Zs 000y 008E 009E 00y 00Z€ 000€ 008z 0032 0052 00ZZ 0002 008 0094 00ph 00ZF 000 008 009 00% 002

Z Apnis ase)

cecoe
ops osss osss oves ozgs oops 0ggs 099 0% 0zpS 008S 09.8 09,8 OviS 0245 004S 039S 0995 0s9S 0205 0095 0955 0955 0SS 0Z8S 00SS 0aps 09pS Osps ozps 00pS 0SS O9FS OES 0ZES O0ES 0@gs 09gs Oowgs 0ggs 00z 08y 093 OsiS 0Z)S 00)S 0805 039S ©0vpS 0ZpS 0003 0

scesz
0009 0sss 09ss Oves 0zps o0ops 099 099S O0s@S 0Z8S 008S 09,6 09,6 OvzS 0Z/S 0045 039S 0995 0s9S 0295 0095 089S 0955 OvSS 0Zgs 00SS 09pS 09pS OvpS OZpS 00pS O08GS O9FS OvES OZES O0SS 09ZS 097s Oves 02z 00gS 08y 094 OviS 0Z)S 00)S 0905 0995 OvpS 0205 0005 08

T Apnis ase)

Inversion case study

accession ID inversed gene start end
NC_022713 tRNA-P 15589 15636
NC_ 23799 15602 15649
NC_ 23799 nad6 14054 14154
NC_ 031827 13952 14052
NC_022713 tRNA-P 15587 15647
NC_ 031827 15624 15684

Table S2: Inversion block locations predicted by DeBBI.

accession ID inversed gene start end
NC_022713 tRNA-P 15584 15653
NC_ 23799 15585 15654
NC_23799 nad6 13777 14298
NC_ 031827 13808 14329
NC_022713 tRNA-P 15584 15653
NC_ 031827 15618 15687

Table S3: Putative inversion block locations annotated by MITOS.

Evaluation with Gecko and CHROMEISTER

For the real genome experiments (three dislocation case studies and one inversion case study, see main manuscript), we also evaluated the
breakpoint predictions with two other sequence aligner Gecko and CHROMEISTER. To this end, we manually determined suitable parameter
settings for each case study and tool. As outlined below, both tools produced predictions of poorer quality than progressiveMauve
(and DeBBI) in all cases.

CHROMEISTER

In CHROMEISTER, the k-mer length needs to be specified, but only multiples of four are possible settings. We hence started with £ = 4
and increased this value as long as more than one alignment block was contained in the output (if fewer alignment blocks are present,
there are no breakpoints). Breakpoints could not be detected in any of the experiments. One explanation for this could be that
the k-mer size can only be increased in multiples of four so that more suitable settings for our application case might get missed.
CHROMEISTER hence seems to be a too coarse-grained approach for the detection of gene breakpoints in mitochondrial genomes.

Gecko

In Gecko the relative alignment similarity, which is the score attained by an alignment divided by the maximum possible score, must be
provided. It must be specified as a percentage, i.e. can attain values between 0 and 100. Starting from 50, we subsequently increased
this parameter by increments of 10 until the number of contradictory alignment blocks was at most 25% of the not-contradictory
alignment blocks in order to keep the number of “random” alignments at bay. Thereby, contradictory alignments are such alignments
where one sequence segment is aligned with multiple segments of the other sequence so that at most one of them is correct, whereas
the others align unrelated sequence segments.

For case study 1, this resulted in a relative similarity score of 50, for case study 2 a value of 80, and for case study 3 a value of 70,
and a value of 50 for the inversion case study. No breakpoints could be identified in the inversion and first dislocation case study. In
each of case study 2 and 3, only two breakpoints could be identified with distances of at most 200 (cf. figs. and [S20)).

start of breakpoint

—— breakpoint region

--- end of breakpoint

-gpeu

+gpeu

+ppeu

+lypeu
14,
+gpeu

5

+£X00

+gdie

+gdie
bl

+1X00

gz O

+Zpeu

+1peu

+21

+quu

*A

+sul

GE£6520 ON

a

-gpeu

+gpeu

+1
+
+H

+ppeu

+EX00

+9die

+gdie
el

+gx00

+a
S

+1X00

$2< O

+zpeu

W

®

+1peu

+quu

+sul

€LE£0€0 DN

genome [nt]

S S S S S S
S & PSS
R I G N O R O S - SO

Figure S16: DeBBI breakpoint plot for first case study.

start of breakpoint

—— breakpoint region

--- end of breakpoint

68,00 DN

069600 ON

N

S g
genome [nt]

Figure S17: progressiveMauve breakpoint plot for second case study.

Y
<)
Q
N

A7

A
S
& Q
9 AWU

Q

& ~
X
&

N
Q
N Q

N

A v ~ A
@ & L QL A
& Q & Q S

‘suorjorpald jurodyearq 1001100Ul 0M) seoNPOoId SIY T, 'SYO0[q dUL3 PaIo[0d aYy) 09 [o[[eled-1jue SI souad Surpuodsariod
91} SUI09UU0D SUI] Y], "90uUanbas puodas ay) Jo +Egpeu dusl YIIm JsIy 9y} Jo 4TS auad suSie A[1091100ul aanepesTssaxdoxd Apnjs ased paryy 10j jo[d jutodyesiq eanepeatsseidoad ;g7 oINS

e
nwu

S
S

&
S

N

Q

©
&

© @
SRS
S &

[3u] swouab

Y
Q o)
& S

\%
Q
N

£
nmv

N

N

&

N

S
Q
nmu

&
nmu

1peu
+Qqoo

-suu
[l

-1peu

+2s

A
Auu

1
-Ivpeu
ypeu

+qoo
+gpeu
-Ippeu

4

~gpeu

-vpeu

-gpeu

+2%00

+gde
+gdie

+gpeu

W

+gpeu

-suL

+EX00

+gx00
+21

Auas
+2s
+gpeu

A
“
+gpeu

+EX00
+
+1%00

202910 ON

€/T9T0 ON

jujodyeaiq Jo pus ---

julodyealq Jo Jels —

uolbau Julodyealq

‘00 SO J& JO 9OURISIP ©)M PaYIJuepI are sjurodsearq om) A[uQ "Apnjs ases puoosss 10j joid jutodsesrq oxoen :gTS omSIg

[3u] swouab

)q
ooa@@((psss
0 O» 0 oV 0 O» 0 O» 0 ov 0
S FFFPFF P F PSS TS

julodyealq Jo pud - --

julodyealq Jo els —

uolbaus Julodyealq ——

069600 DN

#68.00 DN

‘00 ISOUI 3B JO 90URISIP © [YIIM poyrjuopt oxe syurodsyeaiq omy A[u() “Apnjs oseo parys 10y jo[d jurods[earq oxoen :0zS oInSig

[3u] swouab

LA A A A A A A A& &

AT < [T T O N O P O T O T S T S S-S O S - - S SO Y Q S T VR VR

Q & Q & Q & Q & Q & Q & Q & Q ! Q €3 Q & Q & Q & Q & Q & Q &

S & F & FFFF I F I IF I E T I T o

1 1

] |
< i = & 8 ¢ L § x § ez § o9 6 g %er & % : <oF B zod 10

L2
o
N
o
N

Pz H W O3 H F 3 ThER 3 2
S ‘ g d i 4

+2x00

qui
+2s
+gpeu

+£X00
+
+1X00

<q

€/T9T0 DN

julodyealq Jo pud - --

julodyealq Jo els —

uolbaus Julodyealq ——

References

[1] Altschul SF, Gish W. Local alignment statistics. vol. 266 of Computer Methods for Macromolecular Sequence Analysis. Academic
Press; 1996. p. 460—480.

[2] Lawless JF. Statistical Models and Methods for Lifetime Data. John Wiley & Sons; 2011.

[3] Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, et al. CREx: inferring genomic rearrangements based
on common intervals. Bioinformatics. 2007 Nov;23(21):2957-2958. Available from: https://doi.org/10.1093/bioinformatics/
btm468.

https://doi.org/10.1093/bioinformatics/btm468
https://doi.org/10.1093/bioinformatics/btm468

	Handling linear genomes
	Local sequence alignments
	Parameters
	Aligning the flanking sequence blocks in step 4

	Branch lengths
	Algorithms of step 5
	Alignment anchor detection
	Alignment anchor chaining

	Shifted breakpoint bulge candidates
	Impacts of the (k+1)-mer size on the runtime and result accuracy
	Computing collinear blocks
	Taxonomic Trees
	Syntethic datasets
	Gene orders
	Gene orders of dislocation case study 1 (Sillago)
	Gene orders of dislocation case study 2 (Decapodiformes)
	Gene orders of dislocation case study 3 (Nematocera)
	Gene orders of inversion case study

	Rearrangement scenarios computed by CREx
	Inversion case study
	Evaluation with Gecko and CHROMEISTER
	CHROMEISTER
	Gecko

	References

