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Handling linear genomes

For linear genomes, the breakpoint detection routine differs only slightly from the approach presented in the main manuscript.
After IPs and TPs are identified in the first step of the dislocation breakpoint routine, only IP-TP combinations where the IP

position annotations are smaller than the corresponding TP position annotations are used. This way, the genome bounds are not
passed by either of the branches. Thereafter, the algorithm can be carried out in precisely the same manner.
For the inversion breakpoint routine, broken bulges are not considered further where p5 > p′

6 or p′
5 > p6.

Local sequence alignments

Parameters
For the local sequence alignments, an alignment matrix with match costs of 1 and mismatch costs of −2 was used. Moreover, gap
penalties of −2 for opening and extending a gap were applied. These settings are used as default settings in BLAST which assume 95%
of sequence conservation.
To render the quality of the sequence alignments comparable, the E-values of the resulting alignment scores were computed. For

an alignment with score S, the E-value is the expected number of alignments with score at least S,i.e., the smaller the E-value, the
higher the alignment quality. The cutoff E-value should be set based on the degree of conservation of the involved species. The E-value
computation involves statistical parameters λ,K,H, which for gapped alignments must be inferred from simulated sequences. These
were computed by aligning a large number of random sequence tuples and recording their best scores S′ and alignment lengths l′. To
generate sequence tuples of representative sequence composition, long random sequences were generated by concatenating and shuffling
the sequences of all Metazoan species contained in RefSeq89 and then splitting them into sequence chunks of average genome length.
The maximum-likelihood method was then applied to estimate the desired parameters by assuming an extreme value distribution of
S′, as suggested by [1, 2]. Alternatively, the sequences of the species involved can be used for this step. This might result in a slight
accuracy gain of the statistical parameters, however, also an increase in runtime by the amount required to compute these parameters,
where the computation of the alignment scores has the biggest impact as (expensive) sequence alignments need to be conducted. For
all of the experiments conducted in this study, using the sequences of the involved species had no impact on the produced results. This
is thus only advisable for atypical genomes. The parameters can also be supplied manually.
Banded alignments constrain the search space to a short band around the diagonal of the scoring matrix. A bandwidth of 40 nt

proved to produce good results in practice while allowing to greatly reduce the computation time, which is why this is used as default
value. Indeed, conducting a complete sequence alignment instead produced the same predictions in all experiments performed in this
study.

Aligning the flanking sequence blocks in step 4
To explain how the sequence segments are determined for the sequence alignment at the bulge flanks (step 4), consider BB B1 of Figure
2 in the main manuscript. For this case, the alignment is triggered between r2 from pred(5, ρ) to pred(5, 1) = 4 and r1 from pred(5, ρ)
to pred(5, 1) = 4 for the left segment and between r2 from pred(15, k) to pred(15, k + ρ) and r1 from pred(7, k) to pred(7, ρ) for the
right segment. The shift by k is because the position annotated on an edge refers to the last nucleotide of the (k + 1)-mer, not the
entire subsequence.
The flanking MSB s must consist of at least one gene of size | gmin |. We hence use flanking sequence blocks of the order of this

length, in detail ρ = | gmin |+20. The rational of using a slightly longer block is to account for the fact that the match quality generally
decreases in the vicinity of the gene boundaries and this region of low match quality tends to be wider for longer genes, such that
long genes might score too poorly to be identified. 20 additional nucleotides proved to produce good results, while still keeping the
sequences for the alignment at a moderate size and thus keeping the required runtimes for the alignments at bay.
The alignment is enforced to end at pred(5) in r2 and pred(5) in r1 for the left alignment and start at pred(15, k) in r2 and pred(7, k)

in r1 for the right alignment, since the MSB s should directly adjoin the BB. Note that if ρ exceeds the collinear region at the flanks
to a small extent, sequence segments that go beyond this region will generally not be included in the resulting local alignment and in
particular the match quality is not degraded, as opposed to a global alignment.
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Branch lengths

The precise length of the single-color branch depends on the degree of conservation between the genomes under consideration, the
presence of intergenic regions, and whether or not the genes involved in the BB and the two entangled BBs start or end with the same
encoding subsequence. If none of the above apply, the single-color branc is of length k and consists of transition (k + 1)-mer s where
the prefixes correspond to the last few nucleotides of the first breakpoint gene and suffixes correspond to the first few nucleotides of
the second breakpoint gene. Figure S1 shows that some of such cases also occurred in the experiments of the synthetic dataset. It can
be observed that for low and moderate substitution rates most of the BBs have branches of length |bs| = k = 10. High substitution
rates result in a broadening of the peak towards longer branch lengths. None of the branches in the case studies had lengths smaller
than k. The corresponding branch length distribution is shown in Figure S2.

Figure S1: Branch length distribution for the synthetic datasets. Shown are only branch lengths up to size 50.

Figure S2: Branch length distribution for the dislocation case studies.
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Algorithms of step 5

Like in step 4, only the first ρ vertices of the first and the last ρ vertices of the second putative two-color paths are considered.
We call the corresponding r2 subpaths P 3

a and P 4
a , respectively.

Alignment anchor detection

Input: An r2 reference path Pref , a genome r1
Output: A set P of 2-color paths of r1 and r2

1 E ← list of all edges (v, v′, r2, p) on Pref
2 sort E in ascending order with respect to p
3 foreach e = (v, v′, r2, p) in E do
4 M ← retrieve set of matching edges (v, v′, r1, p

′)
5 if M = ∅ then
6 remove e from E
7 continue
8 Le

1 ← set of positions in M in ascending order
9 Le

2 ← {succ(p′, 1) for each p′ in Le
1}

10 // Mark edges in E with collinear successor

11 for i← 1 to |E| − 1 do
12 if LE[i]

2 = LE[i+1 ]
1 then mark E[i]

13 R← empty list
14 // Remove unmarked edges following a block of marked edges

15 for i← 2 to |E| do
16 if not marked(E[i]) and marked(E[i− 1]) then append E[i] to R
17 E ← E with entries in R removed
18 // Compute group identifier

19 for i← 1 to |E| do
20 d[i]← p− i
21 d′[i]← LE[i]

2 [1 ]− i
22 // Group entries in E with equal values of (d, d′) retaining their order

23 G ← ∅
24 G← empty list
25 for i← 1 to |E| do
26 append (E[i],LE[i]

1 ,LE[i]
2 ) to G

27 if d[i+1 ] 6= d[i] or d′[i+1 ] 6= d′[i] then // start new group

28 G ← G ∪ {G}
29 G← empty list

30 P ← ∅
31 foreach G in G do
32 if marked(G[1 ]) then // all elements of G are marked

33 // In this case L1 is of same size for all elements in G

34 for i← 1 to |getL1(G[1 ])| do
35 Pr2 ← (r2, getP(G[1 ]), succ(getP(G[-1 ]), 1))
36 Pr1 ← (r1, getL1(G[1 ])[i], getL2(G[-1 ])[i])
37 P ← P ∪ {Pr2 , Pr1} // add 2-color path to result set

38 else // no element of G is marked

39 foreach g in G do
40 for i← 1 to |getL1(g)| do
41 Pr2 ← (r2, getP(g), getP(g))
42 Pr1 ← (r1, getL1(g)[i], getL1(g)[i])
43 P ← P ∪ {Pr2 , Pr1} // add 2-color path to result set

44 return P
Algorithm 1: Identifying 2-color paths

To determine whether the corresponding r1 subpaths exist and, if so, whether homologous regions are present, we use Algorithm 1.
The procedure is applied independently to the paths P 3

a and P 4
a , unless ba is shorter than |P 1

a |+ |P 2
a |+2ρ, i.e., if the two paths overlap.

This is the case if (different from the situation in BB B1) there is only a single MSB on ba. Then, both paths are combined into a
single path P 3,4

a , which contains the overlapping edges only once, and Algorithm 1 is applied to the combined path P 3,4
a .

The general idea is to create alignment anchors on the r2 reference paths Pref ∈ {P 3
a , P 4

a , P
3,4
a } by combining consecutive (k+1)-mer

matches of r1 using a local sorting strategy. Given an input reference path Pref , the algorithm first retrieves all matching (k+ 1)-mers
of r1 along this path (line 4) and discards all of r2’s edges without matches (line 6). For each of the remaining edges e of r2, which are
stored in ascending order in a list E, an ordered set Le

1 of the positions of matching (k + 1)-mers is generated (line 8), along with a
second set L2 consisting of the succeeding positions stored in Le

1 (line 9). For instance, in the example scenario depicted in fig. S3, two
r1 edges with positions 44 and 249 match at r2’s edge E[1], resulting in sets Le

1 = {44, 249} and Le
2 = {45, 250}. If Le

1 = Le′
2 for two

consecutive edges e and e′ in E, the edges are collinear with the sequences of matching r1 edges at e and e′. This is the case for above
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p2
I = 10 p2

T = 60
Elongate

p1
I = 100 p1

T = 150

p2
s = 23 p2

e = 48

p1
s = 113 p1

e = 138

Figure S4: Linear extension of an anchor point {(r2, 23, 48), (r1, 113, 138)} for an input reference path (r2, 10, 60). The resulting position
array of r1 that would be output by Algorithm 2 is [100, 150]. In the subsequent alignment, r2’s subsequence from position
10 to 60 would be aligned with r1’s subsequence from position 100 to 150.

edge E[1]. Edges E[1] and E[2] are thus collinear to two sequences of matching edges, the first sequence comprised of two r1 edges with
positions 44 and 45 and the second one of two r1 edges with positions 249 and 250. The algorithm marks such edges E[i] with equal
sets L1 and L2 (line 12). Blocks of consecutive marked edges are part of the same collinear region. These are thus grouped together
(lines 23-29), and a two-color path for each collinear sequence of matching (k + 1)-mers is output by the method (lines 32-37). Above
edges E[1] and E[2] are part of such a collinear region, yielding 2-color paths {(r2, 3, 5), (r1, 44, 47)} and {(r2, 3, 5), (r1, 249, 252)}.
Consecutive unmarked edges indicate different independent collinear regions so that the algorithm outputs individual two-color paths
for each of them. All remaining two-color paths of fig. S3 are created this way.

Input: A set P of 2-color paths P = {(r2, p
2
s, p

2
e), (r1, p

1
s, p

1
e)} for a reference path (r2, p

2
I , p

2
T )

Output: A set of alignment candidates A
1 Ladj ← ∅
2 foreach P in P do
3 foreach P̂ in P do
4 if distance(p2

e(P),p2
s(P̂))≤ k + 1 and distance(p1

e(P),p1
s(P̂))≤ k + 1 then

5 Ladj ← Ladj ∪ {(P, P̂ )} // add to adjacency list

6 S ← {(P, P̂ ) ∈ Ladj | @(P ′, P ) ∈ Ladj} // no predecessor exists

7 Ladj ← Ladj \ S
8 do
9 S ′ ← S

10 // remove elements that have been visited before

11 Ladj ← {(P ′, P̂ ) ∈ Ladj | @ (P, P̂ ) ∈ S}
12 // create chains of 2-color paths

13 foreach (P, P̂ ) in S do
14 foreach (P ′, P ′′) in Ladj with P ′ = P̂ do
15 S ← (S \ {(P, P̂ )}) ∪ {(P, P ′′)}

16 while S ′ 6= S
17 C ← argmax(P,P̂ )∈S distance(p2

s(P), p2
e(P̂)) // select longest chains

18 T ← argmaxP ∈P distance(p2
s(P), p2

e(P)) // select longest input 2-color paths

19 dC ← length of chains in C
20 dT ← length of paths in T
21 AP ← ∅
22 // Select longest chains or input 2-color paths as anchor points AP
23 if dC < dT then AP ← T
24 else if dC > dT then AP ← {P | (P, P̂ ) ∈ C}
25 else AP ← T ∩ {P | (P, P̂ ) ∈ C}
26 A ← ∅
27 foreach P = {(r2, p

2
s, p

2
e), (r1, p

1
s, p

1
e)} in AP do

28 p1
I ← pred(p1

s, distance(p2
I ,p2

s))
29 A ← A∩ [p1

I , p
1
I + distance(p2

I ,p2
T )]

30 return A
Algorithm 2: Combine 2-color paths

Alignment anchor chaining
A point mutation distinguishing r1 and r2 in general results in k + 1 unmatched edges in the de-Bruijn graph (cf. Figure 3 of the
main manuscript). As a consequence, there may be multiple separate 2-color paths that are output by Algorithm 1, which are actually
part of the same homologous region. Considered on their own, these individual paths may, because of too short path lengths, not be
sufficient indicators for homology.
Thus, Algorithm 2 creates chains of two-color paths that cover as much of the reference path Pref =: (r2, p

2
I , p

2
T ) as possible. Initially,

all 2-color paths are paired that are separated by a distance of at most k + 1, creating an adjacency list (lines 2-5). These pairs are
chained as long as possible, only storing the first and last pair of the chain (lines 13-15). This is the first time a path traversal is
required. However, given that paths of (k + 1)-mers rather than single (k + 1)-mers are used to form the chain, and the region to be
covered has a maximum length of ρ, this traversal requires only very few iterations. In fact, in the course of the study, fewer than ten
iterations were needed in most cases.
The longer the chain, the larger the portion of the input path that is covered by the chain, and the more likely it is that the chain

corresponds to a homologous region. Hence, only the longest chains are selected as anchor points (lines 17 and 24). Some of the input
2-color paths may not have been included in the adjacency list as there is no other sufficiently close 2-color path. However, these paths
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might on their own be longer than the longest of the identified chains. In such a case, the longest of these unchained paths are used as
anchor points instead (line 23). If the longest unchained paths and the longest chains are of the same length, both are used as anchor
points (line 25). This is the case in the example of fig. S3. The affected paths and chains are highlighted in bold red font. Lastly, the
anchor points are linearly extended to cover the input reference path (r2, p

2
I , p

2
T ) completely (lines 27-29). An example is illustrated in

fig. S4.
The position ranges of r1 resulting from such an extension are the final output of the algorithm. They determine the locations of

the subsequences of r1, which are used in a subsequent banded local sequence alignment with r2’s subsequence from p2
I to p2

T (for an
example confer fig. S3). Duplicate subsequences of r1, which may be present due to repeats, are aligned only once to save computation
time. The considered BB candidate is discarded if there are only low-quality alignments. Otherwise, all of its good-quality alignments
are regarded as homologous regions.
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Shifted breakpoint bulge candidates

At the end of step 6, there may still be shifted BB candidates contained in the set of remaining candidates. Consider Figure S5:
Sequence inconsistencies within gene g2 result in an inconsistency bulge (cf. Figure 3 of the main manuscript) between vertices vc

and vd. This may result in two candidates for breakpoint (g1, g2)2,1. One of them is the correct BB B between vertices va and vb.
The second one is a spurious candidate B′ between vertices va and vd. Such an incorrect candidate emerges if the following two
conditions are met. First, the alignment quality on the right flank of B′ (step 4) is sufficiently high because the inconsistency region
is close enough to the start of g2 so that only a small portion of g2 is missing in the alignment. And second, the distance between
vf and vb is small enough for reference path P 4

a of step 5 to start somewhere in between ve and vf and terminate at vc so that the
corresponding local sequence alignment would encompass the small region between vf and vb with gaps or mismatches, but still yield a
decent alignment score. Usually, B′ would be discarded in such a case in step 6, due to the overlap of its “branches” bs and ba between
vb and vc. However, since this region between vb and vc is very small, the corresponding alignment generated at the end of step 6 may
not be sufficient to detect this region as homologous.

va

ve vf

vb vc vdg1

p
′

1
p ′
3

p ′
2 p

′
4

g3

g2

p′′
3

p
′′
4

g2

Figure S5: Formation of a shifted bulge caused by an inconsistency bulge close to the end of gene g2. In addition to the correct
candidate between va and vb, a second spurious candidate between va and vd exists for the BB of breakpoint (g1, g2)2,1 at
the end of step 6.
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Impacts of the (k + 1)-mer size on the runtime and result accuracy

Generally, an approximate exponential growth of the runtimes can be expected for decreasing values of k. This trend can also be
observed for the three conducted dislocation breakpoint experiments, as shown by Figure S6, which shows the required scaled runtimes
for decreasing values of k. The smallest k value per experiment was chosen so that runtimes of one hour were not exceeded.

Figure S6: Scaled running times of the dislocation breakpoint case studies for decreasing values of k. The scaled runtimes are given as
the required runtime for a set of genomes (case study 1, 2, or 3) and value of k divided by the longest runtime for this set
of genomes among all values of k.

A smaller value of k does not necessarily improve the accuracy of the results. This is because lowering the (k+1)-mer size also increases
the number of random matches between unrelated sequence segments. Thus a compromise between a too-large value, concealing many
sequence similarities among the genomes, and a too-small value, cluttering the graph with many random matches must be found. To
automate the process of deciding on a suitable value for k, an automatic computation routine can determine this value at the start of
DeBBI. Figure S7 summarizes the result quality for the different k values by means of empirical distribution functions of distances of
identified to putative breakpoints. It demonstrates that in most cases, the automatic routine selected k so that the largest number of
breakpoints could be identified. These choices also avoided long runtimes, as can be seen in Figure S6.

Figure S7: Empirical distribution functions (EDFs) of distances of identified to putative breakpoints, normalized to the total number
of putative breakpoints for the dislocation breakpoint case studies and various values of k. The EDFs for the k values that
were selected by the automatic computation routine are displayed as solid lines.

8



Computing collinear blocks

The breakpoint locations can in principle also be used to compute collinear blocks. In detail, the sequence segment between two
successive breakpoints in one sequence forms a collinear block with the corresponding sequence segment in the other sequence. For
instance, consider the two consecutive breakpoints (g2, g3)1,2 and (g4, g5)1,2 shown in Figure S8. In this case, the corresponding
collinear block is formed by the sequence segment from positions 20 to 39 in r1 and the sequence segment from positions 10 to 29 in
r2, corresponding to the two consecutive genes g3 and g4. If, as is the case in this example, all breakpoints have been identified, all
collinear blocks can be constructed in this way. In this example this would result in three collinear blocks.
However, in the course of the method execution, some of the actually correct breakpoints (gi, gj)1,2 might get discarded because one

of the flanking genes gi or gj is not sufficiently conserved to be distinguished from random sequence matches. However, of the two
entangledbreakpoints, breakpoint (gi, gm)2,1 could still be retained if only gj is not sufficiently conserved and breakpoint (gn, gj)2,1
could still be retained if only gi is not sufficiently conserved. Consequently, there will be some inconsistencies, in the form of overlaps,
between the collinear blocks computed as described above. A most consistent set of collinear blocks can be derived by computing all
collinear blocks from the breakpoints of r1 with respect to r2 and computing all collinear blocks from the breakpoints of r2 with respect
to r1 and outputting only the blocks that are contained both times.
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Taxonomic Trees

Figure S9: Taxonomic tree of species of the gene dislocation experiments.
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Figure S10: Taxonomic tree of species of the gene inversion experiment.

Syntethic datasets

Table S1 summarizes the mean (k + 1)-mer match rates and (k + 1)-mer inversion match rates that were measured for all rates of
substitution rsub of the synthetic data set. The table does not display (k + 1)-mer match rates for the different gene orders since
they coincide for the same value of rsub when rounded to two decimal places. This is because gene rearrangements only affect the few
transition (k + 1)-mers involved in a breakpoint so that the number of introduced gene dislocations hardly impacts the (k + 1)-mer
match rates.
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Table S1: Average (k + 1)-mer match rates and (k + 1)-mer inversion match rates for the different substitution rates rsub. This serves
as means to compare the level of sequence similarity of the simulated data sets with the level of sequence similarity of real
genomes.

rsub 1 3 5 7.5
mean pairwise match rate 0.79 0.52 0.34 0.15
mean inversion match rate [%] 71.0 44.0 23.0 2.0

Gene orders

Gene orders of dislocation case study 1 (Sillago)
NC_030373
F rrnS V rrnL L2 nad1 I -Q M nad2 W -N -A -C -Y cox1 -S2 D cox2 K atp8 atp6 cox3 G nad3 R nad4l nad4 H S1 L1 nad5 -nad6 -E
cob T -P
NC_025935
F rrnS V rrnL L2 nad1 I -Q M nad2 W -A -N -C -Y cox1 -S2 D cox2 K atp8 atp6 cox3 G nad3 R nad4l nad4 H S1 L1 nad5 -nad6 -E
cob T -P

Gene orders of dislocation case study 2 (Decapodiformes)
NC_007894
cox3 nad3 -S2 -cob -nad6 -P -nad1 -Q K S1 nad2 cox1 -C -Y -E N cox2 -M R -F -nad5 -nad4 -nad4l T -L2 -G I -rrnL -V -rrnS -W A
D atp8 atp6 -H -L1
NC_009690
cox3 K A R S1 nad2 cox1 cox2 atp8 atp6 -F -nad1 -L2 -L1 -rrnL -V -rrnS -C -Y -Q -G N I nad3 D -nad5 -H -nad4 -nad4l T -S2 -cob
-nad6 -P -M -W -E

Gene orders of dislocation case study 3 (Nematocera)
NC_016173
-C -Y cox1 L2 D cox3 G A S1 nad6 S2 -rrnL -rrnS M nad2 W I cox2 K atp8 atp6 nad3 R N E -F -nad5 -H -nad4 -nad4l T -P cob
-nad1 -L1 -V -Q
NC_016202
I -Q M nad2 W -C -Y cox1 L2 cox2 K D atp8 atp6 cox3 G nad3 A R N S1 E -F -nad5 -H -nad4 -nad4l T -P nad6 cob S2 -nad1 -L1
-rrnL -V -rrnS

Gene orders of inversion case study
NC_022713
F rrnS V rrnL L2 nad1 I -Q M nad2 W -A -N -C -Y cox1 -S2 D cox2 K atp8 atp6 cox3 G nad3 R nad4l nad4 H S1 L1 nad5 -nad6 -E
cob T P
NC_023799
F rrnS V rrnL L2 nad1 I -Q M nad2 W -A -N -C -Y cox1 -S2 D cox2 K atp8 atp6 cox3 G nad3 R nad4l nad4 H S1 L1 nad5 -nad6 -E
cob T -P
NC_023799
F rrnS V rrnL L2 nad1 I -Q M nad2 W -A -N -C -Y cox1 -S2 D cox2 K atp8 atp6 cox3 G nad3 R nad4l nad4 H S1 L1 nad5 nad6 -E
cob T -P
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Rearrangement scenarios computed by CREx

Figure S11: Rearrangement scenarios using common intervals in CREx [3] for first dislocation case study.

Figure S12: Rearrangement scenarios using common intervals in CREx [3] for second dislocation case study.
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Figure S13: Rearrangement scenarios using common intervals in CREx [3] for third dislocation case study.

15



Figure S14: Rearrangement scenarios using common intervals in CREx [3] for inversion case study.
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Inversion case study

accession ID inversed gene start end
NC_022713 tRNA-P 15589 15636
NC_23799 15602 15649

NC_23799 nad6 14054 14154
NC_031827 13952 14052

NC_022713 tRNA-P 15587 15647
NC_031827 15624 15684

Table S2: Inversion block locations predicted by DeBBI.

accession ID inversed gene start end
NC_022713 tRNA-P 15584 15653
NC_23799 15585 15654

NC_23799 nad6 13777 14298
NC_031827 13808 14329

NC_022713 tRNA-P 15584 15653
NC_031827 15618 15687

Table S3: Putative inversion block locations annotated by MITOS.
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Evaluation with Gecko and CHROMEISTER

For the real genome experiments (three dislocation case studies and one inversion case study, see main manuscript), we also evaluated the
breakpoint predictions with two other sequence aligner Gecko and CHROMEISTER. To this end, we manually determined suitable parameter
settings for each case study and tool. As outlined below, both tools produced predictions of poorer quality than progressiveMauve
(and DeBBI) in all cases.

CHROMEISTER

In CHROMEISTER, the k-mer length needs to be specified, but only multiples of four are possible settings. We hence started with k = 4
and increased this value as long as more than one alignment block was contained in the output (if fewer alignment blocks are present,
there are no breakpoints). Breakpoints could not be detected in any of the experiments. One explanation for this could be that
the k-mer size can only be increased in multiples of four so that more suitable settings for our application case might get missed.
CHROMEISTER hence seems to be a too coarse-grained approach for the detection of gene breakpoints in mitochondrial genomes.

Gecko

In Gecko the relative alignment similarity, which is the score attained by an alignment divided by the maximum possible score, must be
provided. It must be specified as a percentage, i.e. can attain values between 0 and 100. Starting from 50, we subsequently increased
this parameter by increments of 10 until the number of contradictory alignment blocks was at most 25% of the not-contradictory
alignment blocks in order to keep the number of “random” alignments at bay. Thereby, contradictory alignments are such alignments
where one sequence segment is aligned with multiple segments of the other sequence so that at most one of them is correct, whereas
the others align unrelated sequence segments.
For case study 1, this resulted in a relative similarity score of 50, for case study 2 a value of 80, and for case study 3 a value of 70,

and a value of 50 for the inversion case study. No breakpoints could be identified in the inversion and first dislocation case study. In
each of case study 2 and 3, only two breakpoints could be identified with distances of at most 200 (cf. figs. S19 and S20).
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