Supplemental material for:

alpha-Synuclein impacts on intrinsic neuronal network activity through reduced levels of cyclic AMP and diminished numbers of active presynaptic terminals


1.	Supplemental Figure S1

Supplemental figure 1 shows an extended data set of that presented in Figure 2 of the main manuscript. Neuron numbers (A) and frequencies of network bursts (B) are shown not only for human -Syn and -Syn, but also for rat -Syn, human -Syn and human 4R Tau. A detailed statistical analysis of differences in network activities is given in C).

These data demonstrate, that human and rat -Syn have an identical impact on network activity, that -Syn does not impact on network activity and is comparable to -Syn in this regard, and that expression of Tau causes a faster onset and even more robust diminishment of neuronal network activity.


Figure legend:
Supplemental Figure S1: Stimulus independent network activity in aged neurons expressing human and rat -Syn, human -Syn, human -Syn and human 4R-Tau or transduced with empty vector
(A) Neuron numbers relative to DIV10 in cultures expressing human -Syn ( H), rat -Syn ( R), human Tau (), human -Syn (), human -Syn () or only nuclear mCherry (N), the latter being considered as an “empty vector” control. As not all quantifications could be done on the same day, values were obtained on DIVs 9/10, 15/16, 18/19, 21/22, 24/25, 27/28 and 31/32. Bars represent means ± SD. Statistics by 1-way ANOVA with Tukey´s test for multiple comparisons. N = 18 neuronal cultures for each condition.
(B) Frequency of network bursts in cultures expressing human -Syn ( H), rat -Syn ( R), human Tau (), human -Syn (), human -Syn () or only nuclear mCherry (N). As not all quantifications could be done on the same day, values were obtained on DIVs 9/10, 15/16, 18/19, 21/22, 24/25, 27/28 and 31/32. Bars represent means ± SD. Statistics by 1-way ANOVA with Tukey´s test for multiple comparisons. N = 18 neuronal cultures for each condition.
(C) Detailed statistical analysis of bursts frequencies as shown in B). Statistics by 1-way ANOVA with Tukey´s test for multiple comparisons. N = 18 neuronal cultures for each condition. N.s. = not significant; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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Supplemental Figure S1: Stimulus independent network activity in aged neurons expressing human and rat -Syn, human -Syn, human -Syn and human 4R-Tau or transduced with empty vector
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Supplemental Figure S2: Miscellaneous information
(A) Additional data to Fig 2C: Absolute number of cells expressing α-Syn + NmC (white columns), γ-Syn + NmC (gray columns) or only nuclear mCherry (NmC) (black columns, the “empty vector” control) n.s. = not significant. Statistics by 1-way ANOVA with pairwise comparison. N = 18 neuronal cultures. Neuron numbers per mm2.
(B) Additional data to Fig 4: Frequency of network bursts with medium exchange on DIV22 (white columns) and without medium exchange (gray columns) in cells overexpressing Bcl-xL and GCaMP6. Statistics by unpaired, two-tailed T-test. n.s. = not significant. N = 12 neuronal cultures.
(C, D) Additional data to Fig 6: Active synapses per mm2 (C) or axon coverage as % of the experimental image (D) in cultures expressing γ-Syn (gray columns) or only nuclear mCherry (black columns, the “empty vector” control). Statistics by unpaired, two-tailed T-test; n.s. = not significant. N = 4-6 neuronal cultures (C); N = 9 neuronal cultures (D).

2.	Supplemental Material & Methods: In silico modelling of neuronal network activity and its dependence from network connectivity
[bookmark: degrading-connectivity][bookmark: sec:sm_topo]Network topology
To create the 2D topology, we model axonal growth as proposed by Orlandi et al. 1. Here, a total of 95 000 neurons are uniformly spread over a 2d surface with 16 mm diameter (at a density of . Somas are modeled as hard, non-overlapping discs with radius  from which axons grow on a semi flexible path with mean length . The path is constructed form many short axon segment of length , where the bending angle  determines the overall stiffness. If an axon intersects the dendritic tree of another neuron (modeled as soft disks with radius ), they have a fixed probability () to form a connection. For our parameters, this leads to  outgoing connections per neuron 2. Once the connections are set (as a binary matrix), additional details of the topology can be discarded. The types of neurons (GABAergic or AMPAergic) are not distinguished topologically.
Changing the convention from references 1, 3 , we also tested a connection probability  that scales proportional to the distance an axon intersects a dendritic tree. We found that average network degrees are similar, although degree distributions differ slightly. For equal network degrees, the resulting dynamics were indistinguishable between both conventions, so that we conclude that the dominant factor (in the regime of bursting dynamics) is indeed the number of connections.
Measuring burst frequency
To match the experiment, only the neurons within a rectangular sensor area of  are recorded. At the chosen density, around  neurons are within the sensor. Recording procedures are not explicitly modeled (e.g. to produce calcium traces from the simulations), rather, we work directly with spike times that are generated for every neuron from a numeric integration of the differential equations, using the Brian 2 neural simulator 4.
Bursts are detected by thresholding the system-wide firing rate. The system-wide rate is calculated by integrating a -wide Gaussian kernel on the spike times of all neurons. As we are interested in the burst frequency, thresholding as a comparably simple burst detection 5 is suitable: A large fraction of neurons contribute in every burst (  ) so that the system-wide firing rate reliably exceeds our chosen threshold of , while the out-of-burst rate is around . Then, the burst frequency is simply calculated by dividing the number of occurred bursts over the recording time.
Dynamics
To model neuronal dynamics, we use quadratic-integrate-and-fire dynamics 6 with synaptic depression 7, which is implemented in a reduced form 1. We set the neuron population to consist of  inhibitory and  excitatory neurons, where inhibitory currents are modeled to have a higher amplitude and a slower decay time than excitatory ones 8, 9, cf. [Table1]. Dynamic parameters of the model were chosen so that the network resembles regular spiking neurons 6, the relative inhibitory strength was  10, 11, and the observed burst frequency was close to 10 network burst per minute, as observed in -Syn controls. Note that the parameter combination that was ultimately used is not unique and other combinations could yield the same burst frequency 12.
Independent of the neuron type, membrane dynamics are described through two coupled differential equations for the membrane potential  and the recovery variable :



The first term in Eq. (0.1) determines the basic behavior of the membrane potential: If below threshold, , the membrane potential slowly decays to the resting value  depending on the characteristic time constant  and leak factor . If the threshold is exceeded, the membrane potential will rise quickly until the peak potential  is reached, a spike is triggered, and the potential is reset to , Eq. (0.3). The membrane potential is decreased through the recovery variable , which is motivated by the activation of  currents and the inactivation of  currents 6. In practice, the coupling of Eqs. (0.1) and (0.2) determines the inter-spike interval and implements an (effective) refractory period. The current terms  and  consist respectively of all excitatory and inhibitory currents arriving from the rest of the network, and  is a noise term that models small membrane fluctuations 1.
Whenever an excitatory (inhibitory) pre-synaptic neuron spikes, it emits a current  that, increments (decrements) the membrane potential of the post-synaptic neuron. The strength of the current depends on the level of pre-synaptic depression. To model the synaptic currents  and the level of synaptic depression ( for full available resources,  for full depletion), every neuron has three additional dynamic variables:



Note that  respectively describe all excitatory and inhibitory currents that arrive at the neuron, whereas  scales the outgoing current, Eqs. (0.6) – (0.7) with . Whenever a pre-synaptic neuron of type  spikes, the respective post-synaptic current term (AMPA or GABA) is incremented instantaneously:

                                                                     (0.8)

where  is a constant to describe the current strength that depends on the type of the pre-synaptic neuron. From Eqs. (0.4) – (0.6), we see that  decays to 0 with a characteristic time  and  slowly recovers to 1 with . In general,  is much longer than the other time constants (see Table 1). An additional source of noise is implemented to account for miniature synaptic potentials (“minis”). The excitatory current arriving at each neuron is increased  at rate  (the creation of minis is modeled as a Poisson process).
Degrading connectivity
To investigate the effects of a reduced network degree, we perform in-silico simulations of quadratic-integrate-and-fire neurons with a topology that resembles the network structure that we find in cultures of dissociated cortical neurons. For every realization of a culture (with a “grown” connection matrix), we gradually decrease the amount of formed connections per neuron and rerun the simulations and activity measurement. To that end, every connection that was formed by the growth algorithm has a post-hoc chance to be removed. Note that the overall connection matrix of the network stays mostly unchanged, as only a few percent of connections are removed. This enables a direct before-vs-after comparison that mimics a recording of the same culture before, and after the connectivity reduction. Alternative implementations to reduce connectivity would be possible (such as limiting axon growth or reducing the probability  to form connections 3 ), but the topological effect — a reduced network degree  — would be unchanged, so that we use the simplest approach that requires no change of the underlying topology.

Redundant synapses
We wanted to check whether redundancies that are realized through multiple synapses could weaken the effect of a degrading network connectivity. To that end, we implemented a version of the model where for every realized connection between a neuron pair, the connection was made through multiple () synapses. Then, when network degradation occurs with a certain probability , not the full connection would be targeted but only a single synapse.
To keep the network dynamics (at ) as before, the current strength per synapse  has to be normalized so that the total strength per connection matches the model without multiple synapses (). However, it has to be decided if this normalization has to occur before or after the network degradation. If we normalize before degradation, this means that a lost synapse effectively reduces the efficacy of a transmitted spike (which in our model is equivalent to reducing ). Thus, a spike that could make the receiving neuron exceed threshold previously might be insufficient after degradation. Such synapses that do not illicit spikes are  typically either pruned away or they are strengthened homeostatically to recover their effect. Thus, loosing one out of many synapses would respectively lead to no connection (just as in the case without redundancy) or remaining synapses that recover the full dynamic strength — just as in the case when normalizing after degradation. Thus, consistent with a homeostatic compensation, we calculate the synaptic normalization after degradation occurred. This also ensures that the (topological) network degradation does not produce a mixed effect with a (dynamic) reduction of the effective current strength , and makes sure that it only leads to a change of connectivity.



Table 1: Overview of model parameters
	Parameter
	Description
	References

	
	Topology                                                                                
	1

	
	Number of neurons, out of which  inhibitory
	8, 9

	
	Neurons observed in the sensor area
	

	
	Sensor area
	

	
	Density of plated neurons (round dish with  diameter)
	

	
	Radius of somas (hard discs)
	

	
	Radius of dendritic trees (soft discs), drawn from Normal dist. (, )
	

	
	Length of axons, drawn from Rayleigh dist. ()
	

	
	Length of axon segments
	

	
	Bending angle between segments, drawn from Normal dist. (, )
	

	
	Probability to form a connection
	

	
	Measured out-degree per neuron (at  disabled connections)
	2

	
	

Dynamic variables
	

	
	Membrane potential
	

	
	Recovery variable
	

	
	Excitatory current
	

	
	Inhibitory current
	

	
	Synaptic depression
	

	
	

Time scales
	

	
	Time scale of the membrane potential 
	

	
	Time scale of the recovery variable 
	

	
	Time scale of recovery from synaptic depression 
	

	
	Decay time of post-synaptic excitatory current
	

	
	Decay time of post-synaptic inhibitory current


	

	
	Dynamic constants                                                        
	1, 6

	
	Resting potential
	

	
	Threshold potential
	

	
	Peak potential, after  is passed, rapid growth towards 
	

	
	After-spike reset value of the membrane potential 
	

	
	After-spike increment value of recovery variable 
	

	
	Leak factor
	

	
	Sensitivity of  to sub-threshold fluctuations of 
	

	
	
	

	
	AMPA current strength
	

	
	GABA current strength
	

	
	 after spike, for depression 
	

	
	
	

	
	Rate for the Poisson input (shot-noise)
	

	
	Strength of shot noise, applied on 
	

	
	Strength of white noise, applied on 


	

	
	Simulation settings
	4

	
	Simulation time (after 20 s thermalisation)
	

	
	Time-step of numeric time integration (Euler)
	

	
	Wall-clock runtime per simulation
	

	
	Number of repetitions
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