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1 Notation

The following notation has been used throughout the manuscript. We employ the operator
notation for expectation, e.g., P0f =

∫
fdP0 and Pθmf = 1

m

∑m
i=1 f(Xθ

i ). The ε-bracketing
number N[](ε,F , d) of a set F with respect to a premetric d is the minimal number of
ε-brackets in d needed to cover F .1 The δ-bracketing entropy integral of F with respect to
d is

J[](δ,F , d) :=
∫ δ

0

√
1 + logN[](ε,F , d)dε.

We denote the usual Hellinger semi-metric for independent observations as

d2
n(θ, θ′) = 1

n

n∑
i=1

∫
(√pθ,i −

√
pθ′,i)2dµi.

Next, K(p(n)
θ0 , p

(n)
θ ) = ∑n

i=1K(pθ0,i, pθ,i) denotes the Kullback-Leibler divergence between
product measures and V2(f, g) =

∫
f | log(f/g)|2dµ. Define 〈a, b〉 = ∑d

i=1 aibi for a, b ∈ Rd.

2 Proof of Theorem 4.1

The following lemma bounds the Kullback-Leibler divergence and variation by possibly
non-diverging multiples of the Hellinger distance.2 This can be used to derive sharper rates
of posterior contraction in models with unbounded likelihood ratios [see also 6, p. 199 and
Appendix B].

Lemma 2.1. For probability measures P and P0 such that P0(p0/p) < ∞, let M :=
infc≥1 cP0(p0

p
| p0

p
≥ [1 + 1

2c ]
2) where P0(· | A) = 0 if P0(A) = 0. For k ≥ 2, the fol-

lowing hold.

(i) −P0 log p
p0
≤ (3 +M)h(p, p0)2.

(ii) P0| log p
p0
|k ≤ 2k−1Γ(k + 1)(2 +M)h(p, p0)2.

(iii) P0| log p
p0
− P0 log p

p0
|k ≤ 22k−1Γ(k + 1)(2 +M)h(p, p0)2.

1A premetric on F is a function d : F × F → R such that d(f, f) = 0 and d(f, g) = d(g, f) ≥ 0.
2Lemma 2.1 (iv) first appeared in Kaji et al. [10, Lemma 5]. We reproduce the proof here as it is used

to prove other statements.
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(iv) ‖1
2 log p

p0
‖2
P0,B ≤ (2 +M)h(p, p0)2.

(v) ‖1
4(log p

p0
− P0 log p

p0
)‖2
P0,B ≤ (2 +M)h(p, p0)2.

Here, ‖f‖P,B :=
√

2P (e|f | − 1− |f |) is the Bernstein “norm”.

Proof. (iv) Using e|x|− 1− |x| ≤ (ex− 1)2 for x ≥ −1
2 and e|x|− 1− |x| < ex− 3

2 for x > 1
2 ,∥∥∥∥log

√
p
p0

∥∥∥∥2

P0,B
≤ 2P0

(√
p
p0
− 1

)2
1

{
p
p0
≥ 1

e

}
+ 2P0

(√
p0
p
− 3

2

)
1

{
p0
p
> e

}
.

The first term is bounded by 2h(p, p0)2. For every c ≥ 1,

P0

(√
p0
p
− 3

2

)
1

{
p0
p
> e

}
≤ P0

(√
p0
p
− 1− 1

2c

)
1

{√
p0
p
≥ 1 + 1

2c

}
= P0

(√
p0
p
≥ 1 + 1

2c

)[
P0

(√
p0
p
− 1

∣∣∣∣ √p0
p
≥ 1 + 1

2c

)
− 1

2c

]
.

Since x− 1
2c ≤

c
2x

2 for every x,

P0

(√
p0
p
− 1

∣∣∣∣ √p0
p
≥ 1 + 1

2c

)
− 1

2c ≤
c
2

[
P0

(√
p0
p
− 1

∣∣∣∣ √p0
p
≥ 1 + 1

2c

)]2

≤ c
2P0

(
p0
p

∣∣∣∣ √p0
p
≥ 1 + 1

2c

)
P0

([
1−

√
p
p0

]2 ∣∣∣∣ √p0
p
≥ 1 + 1

2c

)
by the Cauchy-Schwarz inequality. Then the result follows.

(i) Write −P0 log p
p0

= P0( p
p0
− 1− log p

p0
) +P (p0 = 0). With x− 1− log x ≤ 3(

√
x− 1)2

for x > 1
3 and 1

x
− 1− log 1

x
< 2(
√
x− 3

2) for x ≥ 3,

P0
(
p
p0
− 1− log p

p0

)
≤ 3P0

(√
p
p0
− 1

)2
1

{
p
p0
> 1

3

}
+ 2P0

(√
p0
p
− 3

2

)
1

{
p0
p
≥ 3

}
.

The second term is bounded as above. The first term and P (p0 = 0) =
∫

(√p−√p0)2
1{p0 =

0} are collectively bounded by 3h(p, p0)2.
(ii) Since ex − 1 − x ≥ xk/Γ(k + 1) for k ≥ 2 and x ≥ 0,3 P0| log p

p0
|k ≤ 2k−1Γ(k +

1)‖1
2 log p

p0
‖2
P0,B. Then, apply (iv).

(iii) By the triangle and Jensen’s inequalities, P0| log p
p0
−P0 log p

p0
|k ≤ [(P0| log p

p0
|k)1/k+

|P0 log p
p0
|]k ≤ 2kP0| log p

p0
|k for k ≥ 1. Then, use (ii).

(v) By the convexity of e|x|−1−|x| and Jensen’s inequality, ‖1
4(log p

p0
−P0 log p

p0
)‖2
P0,B ≤

1
2‖

1
2 log p

p0
‖2
P0,B + 1

2‖P0
1
2 log p

p0
‖2
P0,B ≤ ‖

1
2 log p

p0
‖2
P0,B. With (iv) follows the result.

3Γ(k − 1) ≥
∫∞

x
yk−2e−ydy ≥ xk−2e−x implies d2

dx2 (ex − 1− x) ≥ d2

dx2x
k/Γ(k + 1).
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Proof of Theorem 4.1. For D ∈ Dθn,δn , write Pn(log 1−D
1−Dθ

− log D
Dθ

) as

P0 log 1−D
1−Dθ

− P0 log D
Dθ

+ (Pn − P0) log 1−D
1−Dθ

− (Pn − P0) log D
Dθ
.

Since log(x) ≤ 2(
√
x− 1) for x > 0, we have

−2P0

(√
Dθ
D
− 1

)
≤ P0 log D

Dθ
≤ 2P0

(√
D
Dθ
− 1

)
.

By the Cauchy-Schwarz inequality and Assumption 2,

P0

∣∣∣∣√ D
Dθ
− 1

∣∣∣∣ ≤
√
P0

(√
D
Dθ
− 1

)2
= hθ(D,Dθ) ≤ δn,

P0

∣∣∣∣√Dθ
D
− 1

∣∣∣∣ ≤ √P0
Dθ
D

√
P0

(
1−

√
D
Dθ

)2
≤
√
Mδn.

Therefore, |P0 log D
Dθ
| ≤ 2(1 ∨

√
M)δn. Next, let W :=

√
1−D
1−Dθ

− 1 and define a function R
by log(1 +x) = x− 1

2x
2 + 1

2x
2R(x), which implies R is increasing and R(x) < 1 for x > −1,

and R(x) = O(x) as x→ 0. With this, write

P0 log 1−D
1−Dθ

= 2P0W − P0W
2 + P0W

2R(W ).

By the Cauchy-Schwarz inequality,

P0|W | ≤
√
P0

p0
pθ
· hθ(1−D, 1−Dθ) ≤

√
Mδn,

P0W
2 ≤

√
(P0 + Pθ)

(
p0
pθ

)2
(
√

1−D −
√

1−Dθ)2 · hθ(1−D, 1−Dθ).

Since D and Dθ are bounded by 0 and 1,

(P0 + Pθ)
(
p0
pθ

)2
(
√

1−D −
√

1−Dθ)2 ≤ P0
(
p0
pθ

)2
+ P0

p0
pθ
≤ 2M.

Therefore, P0W
2 ≤
√

2Mδn. Next, the residual is bounded as

|P0W
2R(W )| ≤ P0W

2|R(W )|1{W ≤ −1
5}+ P0W

2|R(W )|1{W > −1
5}

≤ P0(−R(W )1{W ≤ −1
5}) + P0W

2|R(−1
5) ∨R(W )|,

where the second inequality uses W ≥ −1 and R increasing. Since R < 1 and P0W
2 ≤

√
2Mδn, the second term is also bounded by

√
2Mδn. With 0 < −R(x) < −2 log(1 + x)
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for x ≤ −1
5 , the first term is bounded by

P0
(
log 1−Dθ

1−D 1{W ≤ −1
5}
)

= P0
(

1−D
1−Dθ

log 1−Dθ
1−D ·

1−Dθ
1−D 1{W ≤ −1

5}
)

≤ sup√
x−1≤−1/5

|x log 1
x
| · P0

(
1−Dθ
1−D 1{W ≤ −1

5}
)
.

The supremum is 1/e. The second term is bounded by P0(W ≤ −1
5)P0(1−Dθ

1−D |
1−Dθ
1−D ≥

25
16) ≤

P0(W ≤ −1
5)M by Assumption 2. By Markov’s inequality, P0(W ≤ −1

5) ≤ 25P0W
2 ≤

25
√

2Mδn. Thus, |P0W
2R(W )| ≤ (1+25M/e)

√
2Mδn. Altogether, we have |P0 log 1−D

1−Dθ
| ≤

(
√

2 + 2 + 25M/e)
√

2Mδn.
Next, we bound E∗ supD∈Dθ

n,δn
|
√
n(Pn−P0) log D

Dθ
|. Under Assumption 2, an analogous

argument as Lemma 2.1 (iv) yields
∥∥∥1

2 log D
Dθ

∥∥∥2

P0,B
≤ 2(1 +M)hθ(D,Dθ)2 ≤ 2(1 +M)δ2

n.

By van der Vaart and Wellner [21, Lemma 3.4.3], we have

E∗ sup
D∈Dθ

n,δn

∣∣∣√n(Pn − P0) log D
Dθ

∣∣∣ . J
(

1 + J
δ2
n

√
n

)

for J := J[](δn, {log D
Dθ

: D ∈ Dθn,δn}, ‖ · ‖P0,B). Note that a δn-bracket in Dθn,δn induces a
Cδn-bracket in {log D

Dθ
} for some constant C since

∥∥∥log u
Dθ
− log `

Dθ

∥∥∥2

P0,B
≤ 4P0

(√
u
`
− 1

)2
= O(dθ(u, `)2)

by Assumption 2. Therefore, J ≤ J[](δn,Dθn,δn , dθ) and hence J(1 + J
δ2
n

√
n
) . δ2

n

√
n by

Assumption 1.
Finally, we bound E∗ supD∈Dθ

n,δn
|
√
n(Pn−P0) log 1−D

1−Dθ
|. As in Lemma 2.1 (iv), we obtain

ρ2 :=
∥∥∥1

2 log 1−D
1−Dθ

∥∥∥2

P0,B
≤ 2(1 + M)P0W

2 ≤ 2(1 + M)
√

2Mδn. Therefore, by van der Vaart
and Wellner [21, Lemma 3.4.3], we have E∗ supD∈Dθ

n,δn
|
√
n(Pn−P0) log 1−D

1−Dθ
| . J

(
1+ J

δ2
n

√
n

)
for J = J[](ρ, {log 1−D

1−Dθ
: D ∈ Dθn,δn}, ‖ · ‖P0,B). With a δn-bracket in Dθn,δn , Assumption 2

implies ∥∥∥log 1−`
1−Dθ

− log 1−u
1−Dθ

∥∥∥2

P0,B
≤ 4P0

(√
1−`
1−u − 1

)2
= O(δn).

Therefore, the expectation of the supremum is of order O(δn
√
n).
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3 Proof of Theorem 4.2

Let hn be a bounded sequence and denote θn := θ0 + hn√
n
and Wn :=

√
p̂θn/p̂θ0 − 1. Define

R by log(1 + x) = x− 1
2x

2 + 1
2x

2R(x) for R(x) = O(x). Then,

nPn log p̂θn
p̂θ0

= 2nPnWn − nPnW 2
n + nPnW 2

nR(Wn).

By Assumption 4 (ii) and Pθ0 ˙̀
θ0 = 0,

2nPnWn − nPnW 2
n = 2nPθ0Wn +

√
nPnh′n ˙̀

θ0 − nPθ0W 2
n + oP (1).

By Assumption 4 (i),

nPθ0W
2
n = 1

4Pθ0h
′
n

˙̀
θ0

˙̀′
θ0hn + oP (1) = 1

4h
′
nIθ0hn + oP (1).

Also, since Pθ0 ˙̀
θ0 = 0,

2nPθ0Wn = 2nP̂θ0Wn + 2n(Pθ0 − P̂θ0)Wn

= −n
∫ (√

p̂θn −
√
p̂θ0
)2

+ n(cθn − cθ0)−
√
nP̂θ0h

′
n

˙̀
θ0

+ 2n
∫ (√

pθ0 −
√
p̂θ0
)(√

pθ0 +
√
p̂θ0
)(
Wn −

h′n
˙̀
θ0

2
√
n

)
.

By Assumption 4 (i), n
∫

(
√
p̂θn −

√
p̂θ0)2 = 1

4 P̂θ0h
′
n

˙̀
θ0

˙̀′
θ0hn + oP (1) = 1

4h
′
nIθ0hn + oP (1). By

the Cauchy-Schwarz inequality,∣∣∣∣∣
∫ (√

pθ0 −
√
p̂θ0
)(√

pθ0 +
√
p̂θ0
)(
Wn −

h′n
˙̀
θ0

2
√
n

)∣∣∣∣∣
≤
[∫ (√

pθ0 −
√
p̂θ0
)2 ∫ (√

pθ0 +
√
p̂θ0
)2
(
Wn −

h′n
˙̀
θ0

2
√
n

)2
]1/2

,

which is OP (δnn−3/4) = oP (n−1) under Assumption 4 (i) and δn = o(n−1/4).
Since |nPnW 2

nR(Wn)| ≤ |nPnW 2
n |max1≤i≤n |R(Wn(Xi))| and nPnW 2

n “converges” to
nPθ0W

2
n = OP (1) by Assumption 4 (ii), it remains to show that the maximum is oP (1).

Write Vn := Wn −
h′n

˙̀
θ0

2
√
n
. Then,

max
i
|Wn(Xi)| ≤ max

i

∣∣∣ 1
2
√
n
h′n

˙̀
θ0(Xi)

∣∣∣+ max
i
|Vn(Xi)|.
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By Markov’s inequality,

P
(

max
1≤i≤n

∣∣∣ 1√
n
h′n

˙̀
θ0(Xi)

∣∣∣ > ε
)
≤ nP

(∣∣∣ 1√
n
h′n

˙̀
θ0(Xi)

∣∣∣ > ε
)

≤ ε−2Pθ0((h′n ˙̀
θ0)2

1{(h′n ˙̀
θ0)2 > nε2}),

which converges to zero as n→∞ for every ε > 0. Thus, maxi
∣∣∣ 1√

n
h′n

˙̀
θ0(Xi)

∣∣∣ converges to
zero in probability. Since Assumption 4 (ii) and (i) imply that nPnV 2

n = nPθ0V
2
n + oP (1) =

oP (1), we have maxi V 2
n (Xi) = oP (1) and hence maxi |Vn(Xi)| = oP (1). Conclude that

maxi |Wn(Xi)| converges to zero in probability and so does maxi |R(Wn(Xi))|.

4 Proof of Theorem 4.4

We will prove Theorem 4.4 under weaker assumptions. In particular, we slightly relax
Assumption 4.4 by considering the aggregate behavior of uθ(X(n)) around θ0 with respect
to the prior Πn(·). Instead, we assume

P
(n)
θ0

(
In(Πn, X

(n), εn) ≤ e−C̃nnε2n
)

= o(1)

where
In(Πn, X

(n), ε) =
∫
Bn(θ0,ε)

euθ(X(n))dΠn(θ) (4.1)

and, at the same time,

P
(n)
θ0

[
sup

Θcn∪dn(θ,θ0)>ε
|uθ(X(n))| > C̃nnε

2
n

]
= o(1)

for any ε > εn. Assumption (4.5) is not needed if one is only interested in the concentra-
tion inside Θn. Alternatively, we could also replace Assumption (4.4) with the following
condition to lower-bound the denominator in (4.3)

sup
θ∈Bn(θ0,εn)

P
(n)
θ0

[
ln(p(n)

θ /p
(n)
θ0 ) + uθ < −nε2

n

]
= o(nε2

n).

Instead of relying on the existence of exponential tests (through Lemma 9 in [5]), we could
then directly assume that for any ε > εn and for all θ ∈ Θn such that d(θ, θ0) > jε for any
j ∈ N there exists a test φn(θ) satisfying

P
(n)
θ0 φn . e−nε2/2 and

∫
X

(1− φn)p(n)
θ euθ ≤ e−j2nε2/2.

We will use the following Lemma (an analogue of Lemma 10 [5]).
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Lemma 4.1. Recall the definition In(Πn, X
(n), ε) in (4.1) and define q(n)

θ = p
(n)
θ /p

(n)
θ0 euθ .

Then we have for any C, ε > 0

P
(n)
θ0

(∫
B(θ0,ε)

q
(n)
θ dΠn(θ) ≤ e−(1+C)nε2 × In(Πn, X

(n), ε)
)
≤ 1
C2nε2 .

Proof. Define a changed prior measure Π?
n(·) through dΠ?

n(θ) = euθ(X(n))∫
euθ(X(n))dθ

dΠn(θ). Lemma
10 of [5] then yields

P
(n)
θ0

(∫
B(θ0,ε)

q
(n)
θ dΠn(θ) ≤ e−(1+C)nε2In(Πn, X

(n), ε)
)

= P
(n)
θ0

(∫
B(θ0,ε)

p
(n)
θ /p

(n)
θ0 dΠ?

n(θ) ≤ Π?
n(B(θ0, ε))e−(1+C)nε2

)
≤ 1
C2nε2

.

Recall the definition In(Πn, X
(n), εn) =

∫
B(θ0,εn) euθ(X(n))dΠn(θ) and define an event

An =
{
X(n) :

∫
B(θ0,εn)

q
(n)
θ dΠn(θ) > e−2nε2nIn(Πn, X

(n), εn)
}

where q(n)
θ = p

(n)
θ /p

(n)
θ0 euθ . From our assumptions, there exists a sequence C̃n > 0 such that

the complement of the set

Bn =
{
X(n) : In(Πn, X

(n), εn) > e−C̃nnε2n and sup
Θcn∪dn(θ,θ0)>εn

|uθ(X(n))| ≤ C̃nnε
2
n

}

has a vanishing probability. Lemma 4.1 then yields P (n)
θ0 [Acn ∪ Bcn] = o(1) as n→∞. The

following calculations are thus conditional on the set An ∩ Bn. On this set, we can lower-
bound the denominator of (4.3) as follows∫

Θ
q

(n)
θ dΠn(θ) >

∫
B(θ0,εn)

q
(n)
θ dΠn(θ) > e−2nε2nIn(Πn, X

(n), εn) ≥ e−(2+C̃n)nε2n .

We first show that P (n)
θ0 [Π?

n(Θ\Θn |X(n))] = o(1) as n → ∞. On the set An ∩ Bn we have
from (4.5) and from the Fubini’s theorem

P
(n)
θ0

[
Π?
n(Θ\Θn |X(n))

]
= P

(n)
θ0

∫Θ\Θn q(n)
θ dΠn(θ)∫

Θ q
(n)
θ dΠn(θ)

 ≤ e2nε2n Π?
n(Θ\Θn)

Π?
n(Bn(θ0, εn))

= e2(1+C̃n)nε2n Πn(Θ\Θn)
Πn(Bn(θ0, εn)) = o(1).
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For some J > 0 (to be determined later) we define the complement of the ball around
the truth as a union of shells

Un = {θ ∈ Θn : dn(θ, θ0) > MJεn} =
⋃
j≥J

Θn,j

where each shell equals

Θn,j = {θ ∈ Θn : Mjεn < dn(θ, θ0) ≤M(j + 1)εn}.

We now invoke the local entropy Assumption (3.2) in [5] which guarantees (according to
Lemma 9 in [5]) that there exist tests φn (for each n) such that

P
(n)
θ0 φn . enε2n−nM2εn/2 and P

(n)
θ (1− φn) ≤ e−nM2ε2nj

2/2 (4.2)

for all θ ∈ Θn such that dn(θ, θ0) > Mεnj and for every j ∈ N\{0} and M > 0. One can
then write

P
(n)
θ0 Π

(
θ ∈ Θ : d(θ, θ0) > MJεn |X(n)

)
≤ P

(n)
θ0 Π(Θc

n |X(n)) + P
(n)
θ0 φn + P

(n)
θ0 (Acn) + P

(n)
θ0 (Bcn)

+
∑
j≥J

P
(n)
θ0 [Π(Θn,j |X(n))(1− φn)I(An ∩ Bn)]

For the last term above, we recall that Π(Θn,j | X(n)) =
∫

Θn,j
q
(n)
θ

dΠn(θ)∫
Θ q

(n)
θ

dΠn(θ)
. We bound the

denominator as before. Regarding the numerator, on the event Bn we have from (4.2) and
from the Fubini’s theorem

P
(n)
θ0

∫
Θn,j

q
(n)
θ dΠn(θ)(1− φn) ≤ e−nM2ε2nj

2/2+C̃nnε2nΠn(Θn,j) (4.3)

Putting the pieces together, we obtain

P
(n)
θ0 [Π(Θn,j |X(n))(1− φn)I(An ∩ Bn)] ≤ e−nM2ε2nj

2/2+2(1+C̃n)nε2n Πn(Θn,j)
Πn[Bn(θ0, εn)] .

Assumption (3.4) of [5] writes as
Πn(Θn,j)

Πn[Bn(θ0, εn)] ≤ enM2ε2nj
2/4 (4.4)

which yields

P
(n)
θ0 Π

(
θ ∈ Θ : d(θ, θ0) > MJεn |X(n)

)
≤ o(1) +

∑
j≥J

e−nε2n(M2j2/4−2−2C̃n).

The right hand side converges to zero as long as J = Jn →∞ fast enough so that C̃n = o(Jn)
and nε2

n is bounded away from zero.
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5 Posterior Concentration Rate: Misspecification Lens

The following Theorem 5.1 quantifies concentration in terms of a KL neighborhoods around
P̃

(n)
θ∗ defined as B(ε, P̃ (n)

θ∗ , P
(n)
θ0 ) =

{
P̃

(n)
θ ∈ P̃(n) : K(θ∗, θ0) ≤ nε2, V (θ∗, θ0) ≤ nε2

}
,where

K(θ∗, θ0) ≡ P
(n)
θ0 log p̃

(n)
θ∗

p̃
(n)
θ

and V (θ∗, θ0) = P
(n)
θ0

∣∣∣∣log p̃
(n)
θ∗

p̃
(n)
θ

−K(θ∗, θ0)
∣∣∣∣2.

Theorem 5.1. Denote with Q(n)
θ a measure defined through dQ(n)

θ =
p

(n)
θ0
p̃

(n)
θ∗

dP (n)
θ and let d(·, ·)

be a semi-metric on P(n). Suppose that there exists a sequence εn > 0 satisfying εn → 0
and nε2

n →∞ such that for every ε > εn there exists a test φn (depending on ε) such that
for every J ∈ N0

P
(n)
θ0 φn . e−nε2/4 and sup

P̃
(n)
θ

:d(P̃ (n)
θ

,P̃
(n)
θ∗ )>Jε

Q
(n)
θ (1− φn) ≤ e−nJ2ε2/4. (5.1)

Let B(ε, P̃ (n)
θ∗ , P

(n)
θ0 ) be as before and let Π̃n(θ) be a prior distribution with a density π̃(θ) ∝

Cθπ(θ). Assume that there exists a constant L > 0 such that, for all n and j ∈ N,

Π̃n

(
θ ∈ Θ : jεn < d(P̃ (n)

θ , P̃
(n)
θ∗ ) ≤ (j + 1)εn

)
Π̃n

(
B(ε, P̃ (n)

θ∗ , P
(n)
θ0 )

) ≤ enε2nj2/8. (5.2)

Then for every sufficiently large constant M , as n→∞,

P
(n)
θ0 Π?

n

(
P̃

(n)
θ : d(P̃ (n)

θ , P̃
(n)
θ∗ ) ≥Mεn |X(n)

)
→ 0. (5.3)

Proof. We define the event

A =

X(n) ∈ X :
∫ p̃

(n)
θ

p̃
(n)
θ∗

dΠ̃n(θ) > e−(1+C)nε2Π̃n[B(ε, P̃ (n)
θ∗ , P

(n)
θ0 )]

 .
The following lemma shows that P (n)

θ0 [Ac] = o(1) as n→∞.

Lemma 5.2. For k ≥ 2, every ε > 0 and a prior measure Π̃n(θ) on Θ, we have for every
C > 0

P
(n)
θ0

∫ p̃
(n)
θ

p̃
(n)
θ∗

dΠ̃n(θ) ≤ e−(1+C)nε2Π̃n[B(ε, P̃ (n)
θ∗ , P

(n)
θ0 )]

 ≤ 1
C2nε2

.

Proof. This follows directly from Lemma 10 in [5].
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We now define Un(ε) = Πn(θ ∈ Θ : d(P̃ (n)
θ , P̃

(n)
θ∗ ) > ε | X(n)). For every n ≥ 1 and

J ∈ N\{0}, we can decompose

P
(n)
θ0 Un(JMεn) =P (n)

θ0 [Un(JMεn)φn] + P
(n)
θ0 [Un(JMεn)(1− φn)I(Ac)]

+ P
(n)
θ0 [Un(JMεn)(1− φn)I(A)].

The first term is bounded (from the assumption (5.1)) as

P
(n)
θ0 [Un(JMεn)φn] ≤ P

(n)
θ0 φn . e−nε2nJ2M2

.

The second term can be bounded by P (n)
θ0 [I(Ac)] ≤ 1

C2J2M2nε2n
which converges to zero as

nε2
n →∞. The last term satisfies

P
(n)
θ0 [Un(JMεn)(1− φn)I(A)] = P

(n)
θ0

(1− φn)I(A)

∫
θ:d(P̃ (n)

θ
,P̃

(n)
θ∗ )>JMεn

p̃
(n)
θ

p̃
(n)
θ∗

Π̃n(θ)dθ
∫

Θ
p̃

(n)
θ

p̃
(n)
θ∗

Π̃n(θ)dθ


≤ e(1+C)nε2

Π̃n[B(ε, P̃ (n)
θ∗ , P

(n)
θ0 )]

∫
θ:d(P̃ (n)

θ
,P̃

(n)
θ∗ )>JMεn

∫
X

(1− φn)p(n)
θ0

p̃
(n)
θ

p̃
(n)
θ∗

 Π̃n(θ)dθ

≤ e(1+C)nε2

Π̃n[B(ε, P̃ (n)
θ∗ , P

(n)
θ0 )]

∑
j≥J

∫
Un,j

Q
(n)
θ (1− φn)dΠ̃n(θ),

where Un,j = {θ : jMεn < d(P̃ (n)
θ , P̃

(n)
θ∗ ) ≤ (j + 1)Mεn)}. The tests (from the assumption

(5.1)) satisfy Q
(n)
θ (1 − φn) ≤ e−nj2M2ε2n/4 uniformly on Un,j. Then we find (using the

assumption (5.2))

P
(n)
θ0 [Un(JMεn)(1− φn)I(A)] ≤ e(1+C)nε2n

∑
j≥J

e−nj2M2ε2n/4+nj2M2ε2n/8.

The sum converges to zero when nε2
n is bounded away from zero and J →∞.

Remark 1. For iid data, [11] introduce a condition involving entropy numbers under mis-
specification which implies the existence of exponential tests for a testing problem that
involves non-probability measures. Since we have a non-iid situation, we assumed the exis-
tence of tests directly.

Remark 2. (Friendlier Metrics) In parametric models indexed by θ in a metric space
(Θ, d), it is more natural to characterize the posterior concentration in terms of d(·, ·)
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rather than the Kullback-Leibler divergence4. Section 5 of [11] clarifies how Theorem 5.1
can be reformulated in terms of some metric d(·, ·) on Θ.

6 Normal Location-Scale Example

Let Xi ∼ P0 = N(0, 1) and Pθ = N(µ, σ2) where θ = (µ, σ2) are the unknown parameters
and θ0 = (0, 1) are the true values. This model satisfies Assumption 3 with the score
˙̀
θ0(x) =

[
x

(x2−1)/2
]
and the Fisher information matrix Iθ0 =

[
1 0
0 1/2

]
. The oracle discrimina-

tor of P0 from Pθ is Dθ(x) =
[
1 + exp

(
−1

2 log σ2 + x2

2 −
(x−µ)2

2σ2

)]−1
. Let us use the logistic

regression using regressors (1, x, x2) to estimate Dθ, i.e.,

Dθ(x) = [1 + exp(−β0 − β1x− β2x
2)]−1.

Thus, the true parameter for the logistic regression is β = (β0, β1, β2) =
(

1
2 log σ2 +

µ2

2σ2 ,− µ
σ2 ,

1
2σ2 − 1

2

)
. Let β̂ = (β̂0, β̂1, β̂2) be the estimator of β. Then,

p̂θ(x) =
exp

(
−x2

2 − β̂0 − β̂1x− β̂2x
2
)

√
2π

and cθ =
exp

(
−β̂0 + 1

2
β̂2

1
1+2β̂2

)
√

1 + 2β̂2

.

Being a MLE, β̂ is regular and efficient, so
√
n(β̂ − β) = ∆ + oP (1) for a normal vector

∆. Moreover, if we generate Xθ
i through Xθ

i = µ + σX̃i, X̃i ∼ N(0, 1), there is one-to-
one correspondence between Xθ1

i and Xθ2
i for every θ1 and θ2, so the dependence of ∆

on θ disappears as n → ∞ for otherwise a more efficient estimator exists to contradict
efficiency. Therefore, the formula for p̂θ implies that Assumption 4 (i) is satisfied with
the oracle score function ˙̀

θ0 ; since p̂θ is twice differentiable, it holds with a faster rate
of OP (‖h‖4). Meanwhile, if inflated with

√
n, the dependence of ∆ on θ may not be

ignorable. Simulation suggests that this dependence is linear and of order O(n−1/2), so
write

√
n(β̂−β) = ∆+n−1/2∆̇(θ−θ0)+oP (n−1/2) for some ∆̇ independent of θ. Considering

4Hellinger neighborhoods are less appropriate for misspecified models
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cθ as a function of β̂ and β as a function of θ, Taylor’s theorem implies

n(cθ − cθ0) =
√
n∂cθ
∂β′

√
n(β̂θ − β̂θ0) + 1

2
√
n(β̂θ − βθ0)′ ∂2cθ

∂β∂β′

√
n(β̂θ − βθ0)

− 1
2
√
n(β̂θ0 − βθ0)′ ∂2cθ

∂β∂β′

√
n(β̂θ0 − βθ0) + oP (1),

√
n(β̂θ − β̂θ0) = ∂β

∂θ′

√
n(θ − θ0) + 1

2(µ− µ0) ∂2β
∂µ∂θ′

√
n(θ − θ0)

+ 1
2(σ2 − σ2

0) ∂2β
∂σ2∂θ′

√
n(θ − θ0) + ∆̇√

n
(θ − θ0) + oP (n−1/2).

At θ = θ0,

∂cθ
∂β

=
[
−1
0
−1

]
, ∂2cθ
∂β∂β′

=
[ 1 0 1

0 1 0
1 0 3

]
, ∂β
∂θ′

=
[

0 1
2

−1 0
0 − 1

2

]
, ∂2β
∂µ∂θ′

=
[ 1 0

0 1
0 0

]
, ∂2β
∂σ2∂θ′

=
[

0 − 1
2

1 0
0 1

]
.

Substituting these, we can derive that

n(cθ − cθ0) =
√
n(θ − θ0)′

([
0 −1 0
0 0 −1

]
∆ + ∆̇′

[
−1
0
−1

])
+ oP (1),

yielding Assumption 4 (iii). Finally, Figure 1 illustrates Assumption 4 (ii) and (iii). The
black lines plot n(cθ − cθ0) as we change θ; they are linear and its quadratic curvatures are
ignorable. The blue lines represent n(Pn − Pθ0)

(√
p̂θ/p̂θ0 − 1− (θ − θ0)′ ˙̀θ0/2

)
and the red

lines n(Pn−Pθ0)
(√

p̂θ/p̂θ0 − 1
)2
; compared to the values of n(cθ − cθ0), both are uniformly

ignorable.
Since this model with the logistic classifier satisfies Assumptions 3 and 4, it is susceptible

to Theorem 4.2. This is supported by a diagnostics plot in Figure 2 which portrays true and
estimated likelihood ratios. In Figure 2a, µ is varied with σ2 fixed at σ2

0 while, in Figure 2b,
σ2 is varied with µ held at µ0. The difference between the estimated log likelihood (blue)
and the quadratic approximation (dashed red) is negligible, demonstrating that the validity
of Theorem 4.2 is justifiable. Compared to the oracle log likelihood (black), the estimated
log likelihood is shifted by the random term

√
n(ċn,θ0 − P̂θ0 ˙̀

θ0). The curvature, however, is
the same as oracle since the red line curves by the Fisher information Iθ0 . Thus, we expect
Algorithm 1 to produce a biased sample and Algorithm 2 a dispersed sample. Note that we
can compute

√
nP̂θ0

˙̀
θ0 = cθ0

√
n
[
− β̂1

1+2β̂2
,−1

2 + 1
2(1+2β̂2) + β̂2

1
2(1+2β̂2)2

]′
, which is asymptotically

linear in ∆ by the delta method. It is then reasonable to expect that this term has mean
zero when averaged over X̃ since β̂ is asymptotically unbiased. If ċn,θ0 also has mean zero,
then Algorithm 2 is unbiased and Algorithm 3 recovers the exact normal posterior.
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(a) The black line n(cθ − cθ0); the blue line

n(Pn − Pθ0)(
√
p̂θ/p̂θ0 − 1 − (θ − θ0)′ ˙̀θ0/2);

the red line n(Pn − Pθ0)(
√
p̂θ/p̂θ0 − 1)2. σ2

is fixed at σ2
0.

(b) The black line n(cθ − cθ0); the blue line

n(Pn − Pθ0)(
√
p̂θ/p̂θ0 − 1 − (θ − θ0)′ ˙̀θ0/2);

the red line n(Pn−Pθ0)(
√
p̂θ/p̂θ0 − 1)2. µ is

fixed at µ0.

Figure 1: Illustration of Assumption 4 (ii–iii) in the normal location-scale example with
n = m = 5000.

(a) True log likelihood, estimated log likeli-

hood, and quadratic approximation by The-

orem 4.2. σ2 = σ2
0.

(b) True log likelihood, estimated log likeli-

hood, and quadratic approximation by The-

orem 4.2. µ = µ0.

Figure 2: Illustration of Theorem 4.2 in the normal mean-scale example with n = m = 5000.

To see that this is indeed the case, we impose a conjugate normal-inverse-gamma prior,
θ ∼ NΓ−1(µ0, ν, α, β), that is, the marginal prior of σ2 is the inverse-gamma Γ−1(α, β)
and the conditional prior of µ given σ2 is N(µ0,

σ2

ν
). The posterior is then analytically

calculated as (for X̄n = 1
n

∑
iXi)

θ | X ∼ NΓ−1
(νµ0 + nX̄n

ν + n
, ν + n, α + n

2 , β + 1
2
∑
i

(Xi − X̄n)2 + nν

ν + n

(X̄n − µ0)2

2
)
.

Figure 3 shows the histograms of Algorithm 1, 2 and 3 after K = 500 MCMC steps. Since
the estimated log likelihood has a rightward bias (as seen from Figure 2), Algorithm 1

14



(a) Algorithm 1 and 2. (b) Algorithm 3.

(c) Algorithm 1 and 2. (d) Algorithm 3.

Figure 3: Histograms of the MHC samples of µ and σ2 in the normal location-scale model.

Algorithm 1 (resp. 2) yield more biased (resp. dispersed) samples compared to the true posterior

(black curve). Algorithm 3 (on the right) tracks the black curve more closely.

produces a sample that is shifted to the right (Figures 3a and 3c). Algorithm 2, on the
other hand, gives a sample that is more dispersed than the posterior but is correctly placed,
indicating that the random bias has mean zero. Consequently, Algorithm 3 generates a
sample that is placed and shaped correctly (Figures 3b and 3d).

7 Mixing Properties of MHC

A critical issue for MCMC algorithms is the determination of the number of iterations
needed for the result to be approximately a sample from the distribution of interest. This
section sheds light on the mixing rate of Algorithm 1. Under standard assumptions on
q(· | ·) (such as positivity almost surely, see Corollary 4.1 in [19]), the distribution of the
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MHC Markov chain after t steps will converge to π?n(θ |X(n)) from any initialization in Θ in
total variation as t→∞. [14] derive necessary and sufficient conditions for the Metropolis
algorithms (with independent or symmetric candidate distributions) to converge at a geo-
metric rate to a prescribed continuous distribution. [3] studied the speed of convergence of
MH when both n→∞ and d→∞ where θ ∈ Θ ⊂ Rd.

We can reformulate their sufficient conditions for showing polynomial mixing times of
MHC. Recall that the stationary distribution π?n(θ | X(n)) of the MHC sampler in (3.4)
normalized to a compact set K ⊂ Θ, writes as Π?

K(B) =
∫
B π

?
n(θ | X(n))/

∫
K π

?
n(θ | X(n)).

We are interested in bounding the number of steps needed to draw a random variable from
Π∗K with a given precision. We denote with Π∗tK the distribution obtained after t steps of
the MHC algorithm starting from Π∗0K . It is known (see e.g. [13]) that the total variation
distance between Q and Qt can be bounded by ‖Π∗K − Π∗tK‖TV ≤

√
M(1 − φ2/2)t, where

M is a constant which depends on the initial distribution Π∗0K and φ is the conductance of
the Markov chain defined, e.g., in (3.13) in [3]. To obtain bounds on the conductance, the
Markov chain needs to transition somewhat smoothly (see assumption D1 and D2 in [3]).
These assumptions pertain to the continuity of the transitioning measure and are satisfied
by the Gaussian random walk with a suitable choice of the proposal variance (see Section
3.2.4 in [3]) The following Lemma summarizes Theorem 2 of [3] in the context of Algorithm
1 under asymptotic normality assumptions examined in more detail in Section 8.

Lemma 7.1. (Mixing Rate) Under conditions in equations (8.7)-(8.8) and a Gaussian
random walk q(· | ·) satisfying Lemma 4 of [3], the global conductance φ of the Markov
chain obtained from Algorithm 1 satisfies 1/φ = O(d) in P (n)

θ0 -probability. In addition, the
minimal number of MCMC iterations needed to achieve ‖Π∗K−Π∗tK‖TV < ε is O(d2 log(M/ε))
for some suitable constant M depending on the initial distribution Π∗0K .

MHC thus attains bounds on the mixing rate that are polynomial in d (i.e. rapid mixing)
under suitable Bernstein-von Mises conditions formalized later in Section 8. This section
investigates how fast the Markov chain converges to its target π?n(θ |X(n)) as the number
of iterations t grows. In Section 4.2.1 (resp. Section 4.2.2), we investigate a fundamentally
different question. We assess the speed at which the target π?n(θ |X(n)) shrinks around the
truth θ0 (resp. a Kullback-Leibler projection) as n grows.
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The multiplication constantM in Lemma 7.1 depends on the initial distribution. Namely,
the initial distribution needs to be “M -warm" according to assumption (3.5) in [3]. Loosely
speaking, M quantifies the amount of overlap between the initial and stationary distri-
butions. Our convergence rate result thereby implicitly incorporates the properties of the
initialization algorithm by regarding the constant M as dependent on the initialization
routine. In our Lotka-Volterra example, we found that the mixing mixing performance of
MHC depends on the classifier. With random forests, the initialization was not as impor-
tant since the shape of the likelihood approximation did not have a sharp peak (compare
Figure 5 and 6 in the main manuscript). On the other hand, glmnet yields likelihood
approximations with only a very narrow area of likelihood support and the initialization
needed to be close in order to avoid a very long burn-in. We have considered an ABC pilot
run for initialization. Alternatively, one could try less accurate/costly classifiers in a pilot
run to obtain a good initialization.

8 Bernstein-von Mises Theorem

The Bernstein-von Mises (BvM) theorem asserts that the posterior distribution of a param-
eter in a suitably regular finite-dimensional model is approximately normally distributed as
the number of observations grows to infinity. More precisely, if pθ is appropriately smooth
and identifiable in θ and the prior Πn(·) puts positive mass around the true parameter θ0,
then the posterior distribution of

√
n(θ− θ̂n) tends to N(0, I−1

θ0 ) for most observations X(n),
where θ̂n is an efficient estimator and Iθ is the Fisher information matrix of the model at
θ. In this section, we want to understand the effect of the tilting factor euθ(X(n)) on the
limiting shape of the pseudo-posterior in (3.4) that is proportional to πn(θ |X(n))euθ(X(n)).
Exponential tilting is particularly intuitive for linear uθ(X(n)) and for Gaussian posteriors
where it implies a location shift. Example 1 below reveals how the behavior of u∗(X(n))
affects the centering of the posterior limit (under linearity and Gaussianity)

Example 1. (Linear uθ) Suppose that the posterior πn(θ | X(n)) is Gaussian with some
mean µ and covariance Σ. This holds approximately in regular models according to the BvM
theorem (Theorem 10.1 in [20]). Assume that there exists an invertible mapping τ : Θ→ Θ
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such that θ = τ(θ̄) where the density for θ̄ satisfies πn(θ |X(n))euθ(X(n))dθ ∝ π∗n(θ̄ |X(n))dθ̄.
Assuming the following linear form (justified in Remark 4.3)

uθ(X(n)) = a∗(X(n)) + θ′u∗(X(n)) (8.1)

we obtain θ̄ ∼ N (µ + Σu∗(X(n)),Σ). In this case, the mapping τ satisfies θ = τ(θ̄) =
θ̄−Σu∗(X(n)), implying a location shift. We had concluded a similar property below Theorem
4.2 at the end of Section 4.1.

We now turn to more precise statements by recollecting the BvM phenomenon under
misspecification in LAN models [12]. The centering and the asymptotic covariance matrix
will be ultimately affected by θ∗ in (4.8).

Lemma 8.1. (Bernstein von-Mises) Assume that the posterior (4.7) concentrates around
θ∗ at the rate ε∗n and that for every compact K ⊂ Rd

sup
h∈K

∣∣∣∣∣∣log
p̃

(n)
θ∗+ε∗nh(X

(n))
p̃

(n)
θ∗ (X(n))

− h′Ṽθ∗∆̃n,θ∗ −
1
2h
′Ṽθ∗h

∣∣∣∣∣∣→ 0 in P (n)
θ0 -probability (8.2)

for some random vector ∆̃n,θ∗ and a non-singular matrix Ṽθ∗. Then the pseudo-posterior
converges to a sequence of normal distributions in total variation at the rate ε∗n, i.e.

sup
B

∣∣∣∣Π∗n (ε∗−1
n (θ − θ∗) ∈ B |X(n)

)
−N∆̃n,θ∗ ,Ṽθ∗

(B)
∣∣∣∣→ 0 in P (n)

θ0 -probability.

Proof. Follows from Theorem 2.1 of [12].

It remains to examine the assumption (8.2). For iid data, [12] derived sufficient condi-
tions (Lemma 2.1) for (8.2) to hold. Due to the non-separability of the term uθ(X(n)), the
mis-specified model cannot be regarded as arriving from an iid experiment. In Lemma
8.2 below we nevertheless provide intuition for when (8.2) is expected to hold if uθ(X(n))
is linear. Recall that in Remark 4.3 we have concluded that under differentiability, the
posterior residual uθ(X(n)) does converge to a linear function in θ. Below, we provide
sufficient conditions for the LAN assumption (8.2), relaxing slightly Lemma 2.1 in [12].
The assumptions in Lemma 8.2 are closely related to the ones in Theorem 4.2. The main
difference is that Lemma 8.2 is concerned with the behavior of the (misspecified) likelihood
around θ∗ as opposed to θ0.
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Lemma 8.2. Assume that P (n)
θ0 = P n

θ0 with a density ∏n
i=1 pθ0(xi) where the function

θ → log pθ(x) is differentiable at θ∗ with a derivative ˙̀
θ. Assume there exists an open

neighborhood U of θ∗ such that
∣∣∣∣log pθ1 (x)

pθ2 (x)

∣∣∣∣ ≤ mθ∗‖θ1 − θ2‖ Pθ0 − a.s.∀θ1, θ2 ∈ U where mθ

is a square integrable function. Assume that the log-likelihood has a 2nd order Taylor ex-
pansion around θ∗ (i.e. (8.5) holds). Assume that uθ is asymptotically linear around θ∗(i.e.
(8.6) holds), then (8.2) holds with ε∗n = 1/

√
n and

Ṽθ = Vθ and ∆̃n,θ = V −1
θ

[
Ċθ√
n

+
√
nPn ˙̀

θ + u∗(X(n))√
n

]
(8.3)

Proof. We can write

log
p̃

(n)
θ∗+εnh

p̃
(n)
θ∗

= log Cθ
∗+εnh

Cθ∗
+ log

p
(n)
θ∗+εnh

p
(n)
θ∗

+ uθ∗+εnh − uθ∗ . (8.4)

This yields, from Lemma 19.31 in [20], that

Gn

(
√
n log

pθ∗+h/√n
p∗θ

− h′ ˙̀θ∗
)
→ 0 in P0,

where Gn =
√
n(Pn − Pθ0) is the empirical process. Assuming that

Pθ0 log
(
pθ
pθ∗

)
= Pθ0

˙̀′
θ∗(θ − θ∗) + 1

2(θ − θ∗)′Vθ∗(θ − θ∗) + o(‖θ − θ∗‖2) as θ → θ∗ (8.5)

one obtains

log
p

(n)
θ∗+h/

√
n

p
(n)
θ∗

= nPn log
pθ∗+h/√n
pθ∗

= oP (1) + Gnh
′ ˙̀
θ∗ + nPθ0 log

pθ∗+h/√n
pθ∗

= oP (1) + Gnh
′ ˙̀
θ∗ + h′nVθ∗h

2 +
√
nPθ0h

′ ˙̀
θ

If we assume asymptotic linearity of uθ around θ∗, i.e.

uθ∗+h/√n(X(n))− uθ∗(X(n)) = 1√
n
h′u?(X(n)) + oP (1) (8.6)

for some u?(X(n)) and

log
Cθ∗+hn/

√
n

Cθ∗
= Ċ ′θ∗hn√

n
+ o(1)

then (8.2) holds with (8.3).
Related BvM conditions have been characterized in [3]. We restate these conditions

utilizing the localized re-parametrization h =
√
n(θ − θ0) − s, where s =

√
n(θ̂ − θ0) is
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a zero-mean vector where θ̂ is some suitable estimator. We first define a localized crite-
rion function `(h) ≡ p̃θ̂+h/

√
n(X(n))π̃(θ̂+h/

√
n)

p̃θ̂(X(n))π̃(θ̂) , which corresponds to the normalized pseudo-
posterior π∗(θ |X(n))/π∗(θ̂ |X(n)). [3] impose a centered variant of (8.2) requiring that `(h)
approaches a quadratic form on a closed ball K (such that5 Λ ≡

√
n(Θ−θ0)−s = K ∪Kc)

in the sense that

| log `(h)− (−h′Jh)/2| ≤ ε1 + ε2 × h′Jh/2 ∀h ∈ K, (8.7)

for some matrix J > 0 with eigenvalues bounded away from zero. If

ε1 = o(1) and ε2 × λ2
max(J)(sup

h∈K
‖h‖)2 = o(1) in P (n)

θ0 -probability. (8.8)

Theorem 1 of [3] shows that `(h)/
∫

Λ `(h)dh approaches the standard normal density in
P

(n)
θ0 -probability as n, d → ∞. The condition (8.7) (a) allows for mild deviations from

smoothness and log-concavity, (b) involves also the prior (unlike (8.2)) but, (c) requires
the existence of a

√
n−consistent estimator θ̂. Lemma 8.1 is more general, where the rate

ε∗n does not need to be 1/
√
n and where the posterior is allowed to have a non-vanishing

bias. The requirement (8.8) imposes certain restrictions on uθ(X(n)). For example, in the
linear case (8.1) one would need u?(X(n)) = o(

√
n) in P (n)

θ0 -probability from (8.8).

9 Alternatives to MHC

A recent paper [9] suggests a related Metropolis-Hastings strategy which relies on a simulation-
based likelihood ratio estimator trained separately from the Markov chain simulation. This
estimator is based on contrastive learning between two fake data-parameter pairs, with pa-
rameters sampled from the prior and with fake data generated either from the marginal or
the conditional likelihood evaluated at sampled prior parameters [18]. See also [17] (Chap-
ter 12) for conditional density estimation using machine learning. Using the marginal
distribution p(·) as a reference and denoting with Dm

θ (X) = p(X)π(θ)
p(X)π(θ)+pθ(X)π(θ) we can re-

write (2.4) as p(n)
θ = p(n)(X(n)) exp

(∑n
i=1 log 1−Dmθ (Xi)

Dm
θ

(Xi)

)
, where p(n)(X(n)) is the marginal

likelihood. Similarly as in (2.5), a likelihood estimator can be then obtained by replacing
5∫

K
`(h)dh/

∫
Λ `(h)dh ≥ 1− oPθ0

(1) and
∫

K
φ(h)dh for φ(·) standard Gaussian density
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Dm
θ with D̂m

θ , which is now trained solely on simulated data. The expression (2.5) then still
holds with uθ now defined using Dm

θ and D̂m
θ . We implement this approach in Section 5.2

(main document) and discuss its theoretical properties in Remark 3. This approach will be
advantageous when the cost of learning the likelihood ratio simulator prior to MCMC sim-
ulation outweighs the costs of performing classification at each MH step. Another related
strategy was proposed in [15], where no reference is used and the likelihood ratio inside
Metropolis-Hastings is estimated by contrastive learning between two fake data generated
from conditional likelihoods evaluated at new versus current parameter values. This ap-
proach also requires classification at each step but is not limited by the sample size n when
choosing the fake data sample size m for classification. We also implement this approach
later in Section 5.2 and make comparisons with our approach in Section 12 in the Sup-
plement. The choice of the contrasting density in the context of parameter estimation in
unnormalized models is discussed in [8].

10 Ricker Model

The Ricker model is a classic discrete model that describes partially observed population
dynamics of fish and animals in ecology. The latent population Ni,t follows

logNi,t+1 = log r + logNi,t −Ni,t + σεi,t, εi,t ∼ N(0, 1),

where r denotes the intrinsic growth rate and σ is the dispersion of innovations. The index
t represents time and runs through 1 to T = 20. The index i represents independent
observations and runs through 1 to n = 300. The initial population Ni,0 may be set as 1
or set randomly after some burn-in period. We observe Xi,t such that

Xi,t | Ni,t ∼ Poisson(ϕNi,t),

where ϕ is a scale parameter. The objective is to make inference on θ := (log r, σ2, ϕ). Each
time sequence Xi := (Xi,1, . . . , Xi,T ) constitutes an observation, where i runs through n.
In our notation, we can define the underlying data-generating process as X̃i,t := (Ui,t, εi,t)
for Ui,t ∼ U [0, 1] and set the function Tθ to map εi to Ni and then (Ui, Ni) to Xi through
the Poisson inverse transform sampling of Ui,t into Xi,t. We set the true parameter as
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Figure 4: Estimated log likelihood ratio for the Ricker model: (Left) function of log r fixing

σ = σ0 and ϕ = ϕ0, (Middle) function of σ2 fixing r = r0 and ϕ = ϕ0, (Right) function of ϕ fixing

σ = σ0 and r = r0.

(log r0, σ
2
0, ϕ0) = (3.8, 1, 10) and employ an improper, flat prior. Note that our method can

accommodate an improper prior, unlike ABC.
There is no obvious sufficient statistic for this model, and the likelihood is intractable

due to the nontrivial time dependence of Ni,t. We use an average of neural network discrim-
inators to adapt to the unknown likelihood ratio. First, we estimate Dθ by a neural network
with one hidden layer with 50 nodes, each of which is equipped with the hyperbolic tangent
sigmoid activation function. Then, we compute the log likelihood of the data ∑i log 1−D̂θ

D̂θ
.

We repeat this for 20 times with independently drawn X̃ and take the average of the
log likelihood. This specification produces approximately quadratic likelihood-ratio curves
(Figure 4). Unlike the location-scale normal model, the fixed design does not produce en-
tirely smooth curves due to the averaging aspect over many discriminators. The quadratic
shape is nevertheless recovered here, implying that the differentiability assumptions from
Section 4.1 are not entirely objectionable.

Figure 5 shows the marginal histograms of the MHC samples (500 MCMC iterations).
The proposal distribution is independent across parameters; log r uses the normal distri-
bution, σ2 the inverse-gamma distribution, and ϕ the gamma distribution; each of them
has the mean equal to the previous draw and variance 1/n. The vertical dashed lines
indicate the true parameter θ0. Note that the posterior is asymptotically centered at the
MLE, not θ0. However, the blue histograms on the left (Algorithm 1) seem too far away
from θ0 relative to the widths of the histograms. On the other hand, the red histograms
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Figure 5: MHC samples for the Ricker model.

Figure 6: MHC samples for the Ricker model (Algorithm 3)

(Algorithm 1) are more dispersed but located closer to θ0. These observations confirm our
theoretical findings. Histograms of Algorithm 3 (Figure 6) look reasonable as a posterior
sample, center around the true values.

Figure 6 and 7 compare our method with the MCWM pseudo-marginal Metropolis-
Hastings algorithm [1]. We have implemented the default pseudo-marginal method which
deploys an average of conditional likelihoods for Xi, given Ni,

p̂(Xi) = 1
K

K∑
k=1

T∏
t=1

p(Xi,t | Ni,t,k) = 1
K

K∑
k=1

T∏
t=1

(ϕNi,t,k)Xi,te−ϕNi,t,k
Xi,t!

as the likelihood approximation, where K is some positive integer and where Ni,t,k are
independently drawn across k = 1, . . . , K. In our comparisons, we let K = 20n. Figure
6 shows that the two methods produce posterior draws that are located at similar places,
and the widths of the histograms are also comparable. We would like to point out, again,
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Figure 7: Posterior samples for the Ricker model using the pseudo-marginal MCWM method

that our method does not require that a tractable conditional likelihood is available nor
that a user-specified summary statistic is supplied.

11 Bayesian Model Selection

The performance of summary statistic-based methods is ultimately sensitive to the quality
of summary statistics whose selection can be a delicate matter. One such instance is model
selection, where it is known that when ABC may fail even when the summary statistic is
sufficient for each of the models considered [16]. Our method does not require a summary
statistic but a sieve of discriminators that can adapt to the oracle discriminator in the limit.
This creates hope that our method can tackle model selection problems. To illustrate this
point we consider a toy model choice problem considered in [16]. The actual data follows
Xi ∼ N(0, 1) for i = 1, . . . , n = 500. We have two candidate models P1,µ = N(µ, 1) and
P2,µ = N(µ, 1 + 3/

√
n) to choose from. We let the parameters be θ := (m,µ), where

m ∈ {1, 2} is the model indicator and µ is unknown mean with a prior N(0, 1). The model
is assigned a uniform prior, i.e. P (m = 1) = P (m = 2) = 0.5. Following the traditional
Bayesian model selection formalism, we collect evidence for model m = 1 with a Bayes
factor

B12 := πn(m = 1 | X)
πn(m = 2 | X) .

The Bayes factor is the ratio of the marginal likelihoods (or posterior probabilities) of
m = 1 over m = 2. The actual Bayes factor value is B12 = 9, indicating strong evidence
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Figure 8: Trace plots of sampled models using: (Left) MH with the true likelihood ratio, (Middle)

ABC with s(X(n)) = X̄n and (Right) fixed generator MHC.

in favor of m = 1. The Bayes factor will be estimated by the ratio of the frequencies
of the posterior samples given by ABC or our method. Since our parameter of interest
m is discrete, there is no de-biasing for this example. [16] in their Lemma 2 show that
when the summary statistic is ∑iXi, the Bayes factor estimated by ABC asymptotes to
1. This is equivalent to choosing the model with a coin toss. For our method, we use the
logistic regression on regressors (1, Xi, X

2
i ), which can mimic the oracle discriminator. The

trace plots of sampled models for exact MH, MHC and ABC are provided in Figure 8.
Table 1 summarizes the posterior model frequencies. The true posterior probabilities are
πn(m = 1 | X) ≈ 0.9 and πn(m = 2 | X) ≈ 0.1, so the Bayes factor is 9. The “Oracle MH”
is the Metropolis-Hastings with the true likelihood, in which 84.4% of the posterior draws
choose model 1. Algorithms 1 and 2 choose model 1 respectively 93.2% and 70% of the
times. ABC based on the sum, on the other hand, chooses the model randomly. Finally,
Figure 9 in Appendix gives the estimated log-likelihood ratio for each model. In terms of
µ, we again see that Algorithm 1 is slightly biased with the correct shape and Algorithm
2 is less biased but more dispersed on average.

Figure 9 shows true likelihood ratio and and classification-based estimates for fixed
and random designs for the Bayesian model selection example from Section 11. Under the
fixed design, the curve is smooth and slightly biased with a similar shape to the true log-
likelihood. For the random design, there is no smoothness (due to the fake data refreshing
aspect).
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Posterior Oracle MH Algorithm 1 Algorithm 2 ABC

Model 1 90% 422 466 350 252

Model 2 10% 78 34 150 248

Bayes factor 9.00 5.41 13.71 2.33 1.02

Table 1: “Posterior” column gives the posterior probability of each model, πn(m = j | X).
Other columns give the frequencies of the corresponding sample of size 500. “Oracle MH”
refers to the Metropolis-Hastings algorithm with the true likelihood. “ABC” is based on
the summary statistics s(X) = X̄n.

Figure 9: Estimated log likelihood for models 1 and 2. The figures indicate that it is
smooth in µ and have the same curvature as the true log likelihood.

12 The CIR Model: Further Details

This section presents additional plots for the CIR analysis from Section 5.1. Figure 10
shows smoothed posterior samples for MHC (fixed generator) and nrep ∈ {1, 5}. These
plots look qualitatively similar to the random generator results presented in Figure 2 in the
main manuscript. Next, Figure 11 and 12 show trace-plots of the MHC samples. We can see
that (1) using larger nrep reduces variance, (2) random generators have smaller acceptance
rates for the same proposal distribution. Trace-plots for the MCWM method (Figure 13)
show bias in estimation of σ. Table 2 shows posterior summaries for the various algorithms
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we tried, including acceptance rates and effective sample size (computed using the coda

R package). Since MHC (random generator) resembles GIMH [2] in that it recycles the
fake data, one would expect the effective sample of MHC to be smaller than for MCWM.
However, making the MCWM likelihood estimator more accurate (increasing M and N)
made the effective sample size (ESS) smaller even though the acceptance rate was still
around 10%. Interestingly, the random generator MHC also showed a decreased ESS (as
well as the acceptance rate) once we used “better" log-likelihood estimator (i.e. averaging
over nrep = 5 estimators using different fake data). Lastly, histograms of the posterior
samples together with demarkations of the 95% credible intervals are in Figure 14 and 15.

Method α β σ AR Time ESS
ᾱ l u β̄ l u σ̄ l u

MH Exact 0.0693 0.683 0.703 0.1558 0.1507 0.1608 0.07 0.696 0.704 9.1 3.3 255
Alg1 (nrep = 1) 0.0691 0.0644 0.0735 0.1505 0.1374 0.1636 0.0703 0.0669 0.0734 16.8 4.6 191
Alg2 (nrep = 1) 0.0691 0.0644 0.0741 0.1476 0.1353 0.1632 0.693 0.0667 0.0725 10.7 4.9 155
Alg1 (nrep = 5) 0.0698 0.0667 0.0725 0.1468 0.1377 0.1574 0.0699 0.676 0.725 7.8 13.9 104
Alg2 (nrep = 5) 0.0691 0.0665 0.0715 0.1468 0.1366 0.1571 0.0691 0.0674 0.0714 5.6 13.9 112
MCWM (M = 2) 0.0693 0.0658 0.0733 0.1469 0.1287 0.1632 0.067 0.0657 0.0684 13.1 15.9 316
MCWM (M = 5) 0.0694 0.0662 0.723 0.1538 0.1423 0.1634 0.0689 0.0676 0.0698 10.1 238.6 63

Table 2: Posterior means and 95% credible interval boundaries (lower (l) and upper (u)).
AR is the acceptance rate and Time is computing time (in hours) for 10 000 iterations.
ESS is the average effective sample size for the three chains computed using the R package
coda.

27



0

100

200

300

400

0.066 0.069 0.072 0.075
value

d
e

n
s
it
y variable

Exact
MHC1_fixed
MHC2_fixed

α
MHC Posterior Distributions

0

20

40

60

0.12 0.13 0.14 0.15 0.16 0.17
value

d
e

n
s
it
y variable

Exact
MHC1_fixed
MHC2_fixed

β
MHC Posterior Distributions

0

100

200

300

400

0.066 0.069 0.072 0.075
value

d
e

n
s
it
y variable

Exact
MHC1_fixed
MHC2_fixed

σ
MHC Posterior Distributions

Figure 10: Smoothed posterior densities obtained by simulation using the exact MH and MHC

fixed generator using nrep ∈ {1, 5}
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Figure 11: Trace-plots of 10 000 MHC iterations with nrep = 1
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Figure 12: Trace-plots of 10 000 MHC iterations with nrep = 5
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Figure 13: Trace-plots of 10 000 MCWM iterations with M ∈ {2, 5}
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Figure 14: Histogram of 9 000 MHC iterations (after 1 000 burnin) with nrep = 1
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Figure 15: Histogram of 9 000 MHC iterations (after 1 000 burnin) with nrep = 5
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13 The Lotka-Volterra Model: Further Details

13.1 Timing Comparisons

The complexity of MHC depends on the complexity of the classifier as well as on how
costly it is to simulate fake data. This will be problem-specific. For example, for the
Lotka-Volterra model, we have used the Gillespie algorithm [7] which can be quite costly.
This will have some implication for the algorithm of [15] which generates two (not just one)
fake data sets at each step. This will be slower than our approach (which generates just one
fake dataset and uses observed data for contrasting) even when m = n. In order to get a
more concrete idea about the dependence on n,m and p (which depends on the length of the
time series), we have measured the cost of a single iteration of MHC for various m,n and p
for the default implementation of cv.glmnet (10 fold cross-validation) and randomForests

(500 trees). The computing times are in Figure 16. The default implementation of glmnet

appears to scale less favorably with n compared to random forests and the complexity, of
course, increases with m. The method of [15] requires simulating two (as opposed to one)
fake dataset at each step and is, thereby, slower. This seemingly minor timing gap can
aggregate in long Monte Carlo simulations. For example, 10 000 iterations of MHC with
default random forests took 2.5 hours for n = m = 20, where [15] takes more than 6 hours
with the same classifier and n = m = 20. This gap is particularly prominent when p (i.e.
the length of the time series) is large. Random forests scale less favorably with p, compared
to glmnet logistic regression.

Our LASSO implementation uses glmnet [4] where the complexity depends on the
number of penalty parameters and the number of iterations of the inner coordinate ascent
algorithm. As shown in Section 3 of [4], the glmnet algorithm for logistic regression has
three nested loops. For each penalty parameter, one performs a penalized variant of iterated
reweighted least squares. Because the weights are changing throughout the iterations, one
cannot use faster covariance updates (Section 2.2 in [4]) and each inner cycle thereby
costs O(np). The complexity (without cross-validation) thus depends on the number of
re-weighting steps, the number of inner iteration cycles and the length of the regularization
path.
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Figure 16: Computing times for one iteration of MHC and Clas MH (Classification MH of
[15]) in the Lotka-Volterra example. (Left) Fixed p = 603 and various n and m (fake data
sample size). (Right) Fixed n = 20 and various p (depending on the length of the time
series).

13.2 The effect of m and nrep

We found that computing the classification estimator separately for nrep many fake data
(using observed data as a reference) and averaging them out stabilizes estimation. Since
our MHC approach uses real observed data for contrasting, it will have the limitation that
the choice of m cannot be much larger than n in order for the classification to yield good
results. Indeed, we found that for small n, increasing m does help as long as it is not
overly large to make the classification problem too imbalanced. This can be seen from
Figure 17 below where using n = 20 and m = 1 000 yielded unstable classification (using
cross-validation and the glmnet classifier). Averaging over nrep log-likelihood estimators
is a heuristic for stabilizing estimation when n is small and, thereby, m cannot be chosen
overly large. In addition, while increasing m may result in estimators which concentrate
more sharply around the truth, averaging out nrep estimators will result in a smoother
final estimator.
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Figure 17: Log-likelihood estimators for varying m and nrep and fixed n = 20.

13.3 Comparisons

Referees suggested comparisons with other classification MCMC approaches which use the
conditional likelihood with fake data as a reference [15] or the marginal likelihood as a
reference [9]. We explore the extent to which using the conditional fixed reference (i.e. the
observed data) in our MHC approach is beneficial. [9] point out that using a fixed reference
point might be problematic if there is not enough overlap between the conditional densities.
MHC uses the truth (i.e. the real data) as the fixed reference, tacitly assuming that if the
Markov chain is initialized in the vicinity of the truth, the lack of overlap between the two
likelihood densities would not be a practical concern. We anticipated that using other fixed
reference point (i.e. not contrasting agains observed data) might increase variance in the
random generator design since the fake reference data would introduce extra randomness.
This is indeed the case when looking at the width of the 95% credible interval in Table 3
(comparing MHC with random forests and Classif MH of [15] with n = m = 20). The only
difference between these two methods is that [15] generates another set of fake data as a
reference.

In particular, the method of [15] directly computes the likelihood ratio of the new
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Figure 18: (Conditional versus Marginal Reference) Plot of estimated log-likelihood
as a function of θ2, keeping all the other parameters at the truth. (Left) The conditional
approach of [15] using various m and using the default random forest classifier (R package
randomForest), (Right) the marginal approach of [9] using various m and the random
forest classifier.

versus old proposed value by contrasting two fake datasets without any fixed reference. We
have implemented their approach which uses a random forest discriminator (the default
randomForest setting in R). The plot of the estimated log-likelihod (a variant of Figure
17 on the right) is depicted in the left panel of Figure 18. We tried fake datasets of size
m = n = 20 and m = 100. Learning, of course, improves with increased m but at much
increased computational cost (see Section 13.1).

[9] suggest a marginal model trained ahead of the Monte Carlo simulation which com-
pares dependent and independent data-parameter pairs. A related marginal technique is in
[18]. We applied the technique of [9] using, again, the default random forest classifier. Due
to the compact support of the parameters (a rather small subset of the cube [0, 1]4), we
can learn the likelihood surface quite well. If the parameters had an unbounded support,
very many observations-parameter pairs would need to be generated and this would drasti-
cally increase the learning time. For example, [9] use 1 million training samples. However,
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performing random forests on such a large dataset would not be practical. For our Lotka-
Volterra model, we trained the classifier using m = 10 000 and m = 50 000 (which took
roughly 2.7 hours). Additional time is needed for the actual MCMC sampling.

To see the effect of the fake data-set size m on the estimator of the (log)-likelihood,
we plot the estimator obtained using the marginal reference [9] in Figure 18 in the right
panel. We found that for the marginal approach, the interaction terms between parame-
ters and data are essential for obtaining good prediction. This is why we did not choose
the LASSO but a non-linear random forest classifier. For the marginal approach, we try
m ∈ {5 000, 10 000, 50 000} using the default implementation of random forests (R package
randomForests). With enough training samples, the estimator is quite smooth. However,
as will be seen from histograms and traceplots (Figure 24 and Figure 20 below) there is
certain bias in the posterior reconstruction. Choosing m = 10 000, the estimator still peaks
around the truth but is wigglier. The conditional approach of [15] also yields estimators
peaked around the truth. The shape is similar to our fixed reference approach using ran-
dom forests (Figure 17 on the right). However, both of these plots yield curves that are
not nearly as peaked as with the glmnet classifier. This has at least two implications: (1)
the Metropolis-Hastings with the glmnet classifier will be far more sensitive to initializa-
tions where we need to perhaps run ABC or other pilot run to obtain a satisfactory guess
(see Figure 22), (2) if initialized properly and if the chain mixes well, the glmnet classifier
might provide tighter credible intervals. The choice of the proposal distribution will be also
important and it should reflect the curvature of these likelihood shapes.

To see whether our ABC summary statistics are able to capture the oscillatory behavior
(at different frequencies) and distinguish it from exploding population growth, we have
plotted the squared ‖ · ‖2 distance of the summary statistics6 (i.e. the ABC tolerance
threshold ε) relative to the real data for a grid of values θ2, fixing the rest at the true
values θ0

1 = 0.01, θ0
3 = 1, θ0

4 = 0.01 (see Figure 19a). We can see a V-shaped evolution of ε
reaching a minimum near the true value θ0

2 = 0.5, especially for nrep = 20. This creates
hope that ABC based on these summary statistics has the capacity to provide a reliable
posterior reconstruction. Contrastingly, we have plotted the estimated log-likelihood η ≡

6Out of curiosity, we have considered a single fake dataset as well as the average tolerance over nrep
fake data replications.
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Figure 19: Lotka-Volterra model. ABC discrepancy ε and the classification-based log-likelihood

‘estimator’ η using observed data as a reference with the randomForest classifier.

∑n
i=1 log[(1 − D̂(xi))/D̂(xi)] (as a function of θ2) where xi = (X i

1, . . . , X
i
T , Y

i
1 , . . . , Y

i
T )′

after training the LASSO-penalized logistic regression classifier (Figure 17 on the right) on
m = n fake data observations x̃i = (X̃ i

1, . . . , X̃
i
T , Ỹ

i
1 , . . . , Ỹ

i
T )′ for 1 ≤ i ≤ m using the cross-

validated penalty λ (using the R package glmnet). We also use the default implementation
of random forests using the R package randomForest (Figure 19 on the right). We can see
that random forests provide estimators which are not as sharply peaked, suggesting less
sensitivity to Markov chain initialization.

The trace-plots of MHC and the approaches of [15] and [9] are in Figures 20, 21 and
22). Figure 23 portrays histograms of ABC samples (top r = 100 out of M = 10 000 in
the upper panel and top r = 1 000 out of M = 100 000 in the lower panel). Finally, Figure
24 shows histograms of MH samples (MHC, Classification MCMC of [15] and ALR MH
approach of [9]).
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Figure 20: Traceplots of ALR MH of [9] with m = 10 000 (top) and m = 50 000 (bottom)
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Figure 21: Traceplots of Classif MH of [15] with m = 20 (top) and m = 100 (bottom)
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Figure 22: Traceplots of MHC with glmnet (top) and random forests (bottom)
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ABC: M=10 000
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Figure 23: ABC analysis of the Lotka-Volterra model. Upper panel usesM = 10 000 and r = 100

whereas the lower panel uses M = 100 000 and r = 1 000. Vertical red lines mark the true values.
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MHC: Random Forests
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Figure 24: MH analysis of the Lotka-Volterra model (9 000 MCMC iterations after 1 000 burnin).

Upper panel shows results for MHC with random forests, the middle panel uses the classification

MCMC approach of [15] (using m = n = 20) and the lower panel is the ALR MH approach of [9].

Vertical red lines mark the true values.
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