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Experimental setting 
 
Five artificial rice plots were established using small plastic containers (90 × 90 × 34.5 cm; 
216 L total volume; Risu Kogyo, Kagamigahara, Japan) in an experimental field at the Center 
for Ecological Research, Kyoto University, in Otsu, Japan (34˚ 58′ 18′′ N, 135˚ 57′ 33′′ E). 
Sixteen Wagner pots (φ174.6 × φ160.4 × 197.5 mm; AsOne, Osaka, Japan) were filled with 
commercial soil, and three rice seedlings (var. Hinohikari) were planted in each pot on 23 
May 2017 and then harvested on 22 September 2017 (122 days). The rice growth data are 
being analyzed for different purposes and thus are not shown in this report. The containers 
(hereafter, “plots”) were filled with well water, and the ecological community was monitored 
by analyzing DNA in the well water (see following subsections). 
 
 
Field monitoring of the ecological community 
 
To monitor the ecological community, water samples were collected daily from the five rice 
plots. Approximately 200 ml of water in each rice plot was collected from each of the four 
corners of the plot using a 500-ml plastic bottle and taken to the laboratory within 30 
minutes. Water samples were kept at 4˚C during transport. The water was filtered using 
Sterivex filter cartridges (Merck Millipore, Darmstadt, Germany). Two types of filter 
cartridges were used to filter water samples: to detect microorganisms, φ0.22-µm Sterivex 
(SVGV010RS) filter cartridges that included zirconia beads inside (for degradation of the 
microbial cell wall) were used [1], and to detect macroorganisms, φ0.45-µm Sterivex 
(SVHV010RS) filter cartridges were used. Water in each plastic bottle was thoroughly mixed 
before filtration, and 30 ml and 100 ml aliquots of the water were filtered using φ0.22-µm 
and φ0.45-µm Sterivex, respectively (slightly adjusted when the filters were clogged). After 
filtration, 2 ml of RNAlater solution (ThermoFisher Scientific, Waltham, Massachusetts, 
USA) were added to each filter cartridge to prevent DNA degradation during storage. In total, 
1220 water samples (122 days × 2 filter types × 5 plots) were collected during the census 
term. In addition, 30 field-level negative controls, 32 PCR-level negative controls with or 
without the internal standard DNAs and 10 positive controls to monitor the potential DNA 
cross-contamination and degradation during the sample storage, transport, DNA extraction 
and library preparations were used. Visual inspections of the negative and positive control 
results indicated no serious DNA contaminations or degradation during analyses (Fig. S2). 
Detailed information on the negative/positive controls are provided in the electronic 
supplementary material, Text. 
 
 
DNA extractions 
 
DNA was extracted using a DNeasy Blood & Tissue kit following a protocol described in my 
previous study [1]. First, the 2 ml of RNAlater solution in each filter cartridge were removed 
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from the outlet under vacuum using the QIAvac system (Qiagen, Hilden, Germany), followed 
by a further wash using 1 ml of MilliQ water. The MilliQ water was also removed from the 
outlet using the QIAvac. Then, Proteinase K solution (20 µl), PBS (220 µl) and buffer AL 
(200 µl) were mixed, and 440 µl of the mixture was added to each filter cartridge. The 
materials on the cartridge filters were subjected to cell lysis by incubating the filters on a 
rotary shaker (15 rpm; DNA oven HI380R, Kurabo, Osaka, Japan) at 56˚C for 10 min. After 
cell lysis, filter cartridges were vigorously shaken (with zirconia beads inside the filter 
cartridges for 0.22-µm cartridge filters) for 180 sec (3200 rpm; VM-96A, AS ONE, Osaka, 
Japan). The bead-beating process was omitted for 0.45-µm cartridge filters. The incubated 
and lysed mixture was transferred into a new 2-ml tube from the inlet (not the outlet) of the 
filter cartridge by centrifugation (3,500 g for 1 min). Zirconia beads were removed by 
collecting the supernatant of the incubated mixture after the centrifugation. The collected 
DNA was purified using a DNeasy Blood & Tissue kit following the manufacturer’s protocol. 
After the purification, DNA was eluted using 100 µl of the supplied elution buffer. Eluted 
DNA samples were stored at −20°C until further processing. 
 
 
Library preparation for metabarcording 
 
Prior to the library preparation, work spaces and equipment were sterilized. Filtered pipet tips 
were used, and pre-PCR and post-PCR samples were separated to safeguard against cross-
contamination. PCR-level negative controls (i.e., with and without internal standard DNAs) 
were employed for each MiSeq run to monitor contamination during the experiments. 
     Details of the library preparation process are described in the electronic supplementary 
material, Text. Briefly, the first-round PCR (first PCR) was carried out with the internal 
standard DNAs to amplify metabarcoding regions using primers specific to prokaryotes 
(515F and 806R) [2], eukaryotes (Euk_1391f and EukBr) [3], fungi (ITS1-F-KYO1 and 
ITS2-KYO2) [4] and animals (mostly invertebrates in the present study) (mlCOIintF and 
HCO2198) [5,6] (Note that internal standard DNAs were included for each sample). After the 
purifications of the triplicate 1st PCR products, the second-round PCR (second PCR) was 
carried out to append indices for different templates (samples) for massively parallel 
sequencing with MiSeq. Twenty microliters of the indexed second PCR products were mixed, 
the combined library was purified, and target-sized DNA of the purified library was excised 
and quantified. The double-stranded DNA concentration of the library was then adjusted 
using MilliQ water and the DNA was applied to the MiSeq (Illumina, San Diego, CA, USA). 
 
 
Sequence processing: Amplicon sequence variant (ASV) approach 
 
The raw MiSeq data were converted into FASTQ files using the bcl2fastq program provided 
by Illumina (bcl2fastq v2.18). The FASTQ files were then demultiplexed using the command 
implemented in Claident (http://www.claident.org) [7]. I adopted this process rather than 
using FASTQ files demultiplexed by the Illumina MiSeq default program in order to remove 
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sequences whose 8-mer index positions included nucleotides with low quality scores (i.e., Q-
score < 30). 
     Demultiplexed FASTQ files were analyzed using the Amplicon Sequence Variant 
(ASV) method implemented in the DADA2 (v1.11.5) [8] package of R. First, the primers 
were removed using the external software cutadapt v2.6 [9]. Next, sequences were filtered for 
quality using the DADA2::filterAndTrim() function, and rates were learned using 
DADA2::learnErrors() function (MAX_CONSIST option was set as 20). Then, sequences 
were dereplicated, error-corrected, and merged to produce an ASV-sample matrix. Chimeric 
sequences were removed using the DADA2::removeBimeraDenove() function. 
     Taxonomic identification was performed for ASVs inferred using DADA2 based on the 
query-centric auto-k-nearest-neighbor (QCauto) method [7] and subsequent taxonomic 
assignment with the lowest common ancestor algorithm [10] using “overall_class” and 
“overall_genus” database and clidentseq, classigntax and clmergeassign commands 
implemented in Claident v0.2.2019.05.10. I chose this approach because the QCauto method 
assigns taxa in a more conservative way (i.e., low possibility of false taxa assignment) than 
other methods. Because the QCauto method requires at least two sequences from a single 
microbial taxon, only internal standard DNAs were separately identified using BLAST [11]. 
     After the taxa assignment, sequence performance was carefully examined using 
rarefaction curves, detected reads from PCR and field negative controls (Fig. S2 and the 
electronic supplementary material, Text). In addition, whether the PCR-based assessments of 
community diversity were biased was tested by performing shotgun metagenomic analysis of 
a few representative samples (Fig. S3f–i). Although the lower DNA concentrations and 
shallow sequencing depth might reduce the detection rate of rare taxa by the quantitative 
MiSeq sequencing, saturated rarefaction curves (Fig. S2a–d) and the results of shotgun 
metagenome analysis (Fig. S3f–i) suggested that the quantitative MiSeq sequencing captured 
most of the diversity in the water samples. Also, the results of PCR and field negative 
controls suggested that there were low levels of contamination during the monitoring, DNA 
extractions, library preparations and sequencing (Fig. S2). 
 
 
Estimations of DNA copy numbers 
 
For all analyses in this subsection, the free statistical environment R 3.6.1 was used [12]. The 
procedure used to estimate DNA copy numbers consisted of two parts, following previous 
studies [1,13]: (i) linear regression analysis to examine the relationship between sequence 
reads and the copy numbers of the internal standard DNAs for each sample (Fig. S3a, b), and 
(ii) the conversion of sequence reads of non-standard DNAs to estimate the copy numbers 
using the result of the linear regression for each sample. Linear regressions were used to 
examine how many sequence reads were generated from one DNA copy through the library 
preparation process. Note that a linear regression analysis between sequence reads and 
standard DNAs was performed for each sample and the intercept was set as zero. The 
regression equation was: MiSeq sequence reads = regression slope × the number of standard 
DNA copies [/µl]. Most samples show highly significant linear relationship between the copy 
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numbers and sequence reads of the standard DNAs (Fig. S3a, b), suggesting that the number 
of sequence reads produced is proportional to the copy number of DNAs within a single 
sample. 
     The sequence reads of non-standard DNAs were converted to copy numbers using 
sample-specific regression slopes estimated using the above regression analysis. The number 
of non-standard DNA copies was estimated by dividing the number of MiSeq sequence reads 
by the value of a sample-specific regression slope (i.e., the number of DNA copies = MiSeq 
sequence reads/regression slope). A previous study demonstrated that these procedures 
provide a reasonable estimate of DNA copy numbers using high-throughput sequencing [13]. 
     After the conversion to DNA copy number, ASVs with low DNA copy numbers were 
excluded because their copy numbers are not sufficiently reliable. Also, ASVs with low 
entropy (information contained in the time series) were excluded because reliable analyses of 
EDM require a sufficient amount of temporal information in the time series. 
 
 
Independent validations of the MiSeq sequencing with standard DNAs 
 
The quantitative capacity of the MiSeq sequencing with internal standard DNAs (i.e., the 
quantitative MiSeq sequencing) is one of important factors that could influence subsequent 
data analyses. To check the reliability of the quantitative capacity of the method, I performed 
two independent DNA measurements (fluorescent-based total DNA quantifications and 
quantitative PCR [qPCR] of the 16S region) and compared the results with those of the 
quantitative MiSeq sequencing. Brief protocols of the experiments are described below. 
Details of the total DNA quantification, qPCR and shotgun metagenomic analysis and 
discussion of the results are provided in the electronic supplementary material, Text. 
     Total DNAs were quantified using the Quant-iT assay kit (Promega, Madison, 
Wisconsin, USA). Three µl of each extracted DNA (from φ0.22-µm Sterivex) was mixed 
with the fluorescent reagent and DNA concentration was measured following the 
manufactuer’s protocol. The results were compared with the total DNA copy numbers 
estimated by quantitative MiSeq sequencing of four marker regions (i.e., 16S, 18S, ITS and 
COI) (Fig. S3c). An assumption behind the analysis is that most cellular organisms were 
captured by sequencing the four marker regions. 
     qPCR of the 16S region was performed using the same primer set used for the 
quantitative MiSeq sequencing (515F-806R primers) [2]. Briefly, 2 µl of each extracted DNA 
(from φ0.22-µm Sterivex) was added to an 8-µl qPCR reaction containing 1 µl of 5 µM 515F 
primer, 1 µl of 5 µM 806R primer, 5 µl of Platinum SuperFi PCR Master Mix (ThermoFisher 
Scientific, Waltham, Massachusetts, USA), 0.5 µl of 20 × EvaGreen (Biotium, San Francisco, 
California, USA), and 0.5 µl of H2O. Sixty cycles of PCR were performed and the 
fluorescence was measured by LightCycler 480 (Roche, Basel, Switzerland). The total 16S 
copy numbers measured by qPCR correlated well with those measured by the quantitative 
MiSeq sequencing (Fig. S3d). In contrast, those measured by qPCR did not show a linear 
relationship with sequence reads (Fig. S3e). 
     Furthermore, to check whether and how PCR-based assessments of community 
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composition biased the results, shotgun-metagenomic analysis was performed for a subset of 
the samples. Only four samples, of which the community diversity was high, were analyzed 
because much deeper sequencing is necessary for the shotgun metagenomic analysis. Briefly, 
approximately 10–30 ng of total DNA were used as inputs, and Illumina DNA Prep (Illumina, 
San Diego, CA, USA) was used to prepare the library for the shotgun metagenome. The 
library was prepared by following the manufacture’s protocol. The double-stranded DNA 
concentration of the library was then adjusted to 4 nM and the DNA was sequenced on 
MiSeq using a MiSeq V2 Reagent kit for 2 × 250 bp PE (Illumina, San Diego, CA, USA). In 
total, 20,601,323 reads (10 Gb for 4 samples) were generated. The low quality reads and 
adapter sequences were removed using fastp [14], and the filtered sequences were analyzed 
using phyloFlash [15]. 
 
 
Empirical dynamic modeling: Convergent cross mapping (CCM) 
 
The reconstruction of the original dynamics using time-lagged coordinates is known as State 
Space Reconstruction (SSR) [16,17] and is useful when one wants to understand complex 
dynamics. Recently developed tools for nonlinear time series analysis called “Empirical 
Dynamic Modeling (EDM)”, which were specifically designed to analyze state-dependent 
behavior of dynamic systems, are rooted in SSR [18–21]. These methods do not assume any 
set of equations governing the system, and thus are suitable for analyzing complex systems, 
for which it is often difficult to make reasonable a priori assumptions about their underlying 
mechanisms. Instead of assuming a set of specific equations, EDM recovers the dynamics 
directly from time series data, and is thus particularly useful for forecasting ecological time 
series, which are otherwise often difficult to forecast. 
     To detect causation between species detected by the DNA analysis, I used convergent 
cross mapping (CCM) [19,22]. An important consequence of the SSR theorems is that if two 
variables are part of the same dynamical system, then the reconstructed state spaces of the 
two variables will topologically represent the same attractor (with a one-to-one mapping 
between reconstructed attractors). Therefore, it is possible to predict the current state of a 
variable using time lags of another variable. We can look for the signature of a causal variable 
in the time series of an effect variable by testing whether there is a correspondence between 
their reconstructed state spaces (i.e., cross mapping). This cross-map technique can be used to 
detect causation between variables. Cross-map skill can be evaluated by either a correlation 
coefficient (ρ), or mean absolute error (MAE) or root mean square error (RMSE) between 
observed values and predictions by cross mapping. 
     In the present study, cross mapping from one variable to another was performed using 
simplex projection [23]. How many time lags are taken in SSR (i.e., optimal embedding 
dimension; E) is determined by simplex projection using RMSE as an index of forecasting 
skill. More detailed algorithms about simplex projection and cross mapping can be found in 
previous reports [19,23]. 
     When the causal relationships between network properties were examined, I considered 
the interaction time lag between the network properties. This can be done by using “lagged 
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CCM” [24]. For normal CCM, correspondence between reconstructed state space (i.e., cross-
mapping) is checked using the same time point. In other words, information embedded in an 
effect time series at time t may be used to predict the state of a potential causal time series at 
time t. This idea can easily be extended to examine time-delayed influence between time 
series by asking the following question: is it possible to predict the state of a potential causal 
time series at time t–tp (tp is a time delay) by using information embedded in an effect time 
series at time t? Ye et al. [24] showed that lagged CCM is effective for determining the 
effective time delay between variables. In the present study, I examined the time delay of the 
effects from 0 to 14 days. When examining species interaction in the rice plots, the time delay 
of the interactions was fixed as –1 in order to avoid extremely large computational costs (i.e., 
1197 × 1197 CCMs must be performed for each tp). 
     The significance of CCM is judged by comparing convergence in the cross-map skill of 
Fourier surrogates and original time series. More specifically, first, 1000 surrogate time series 
for one original time series are generated. Surrogate time series were generated so that they 
conserve seasonality (i.e., rEDM::make_surrogate_data(method = “seasonal”); details are in 
the scripts deposited). Five rice plot replicates were treated as if they were taken in five 
different years. Second, the convergence of the cross-map skill is calculated for these 1000 
surrogate time series and the original time series. Specifically, the convergence of the cross-
map skill (measured by ΔRMSE in the present study) is calculated as the cross-map skill at 
the maximum library length minus that at the minimum library length [19]. Based on 
consideration of a large number of CCMs among 1197 DNA species, I used P = 0.005 as 
threshold. For CCMs among the network properties, I used P = 0.05, a more commonly used 
threshold. 
 
 
Empirical dynamic modeling: Multivariate, regularized S-map method 
 
The multivariate S-map (sequential locally weighted global linear map) method allows 
quantifications of dynamic (i.e., time-varying) interactions [20,25]. Consider a system that 
has E different interacting variables, and assume that the state space at time t is given by x(t) 
= {x1(t), x2(t), … , xE(t)}. For each target time point t*, the S-map method produces a local 
linear model IS that predicts the future value x1(t*+p) from the multivariate reconstructed 
state space vector x(t*). That is,  

𝑥"!(𝑡∗ + 𝑝) = 𝐼𝑆# ++𝑰𝑺$ 	𝑥$(𝑡∗)
%

$&!

 

where 𝑥"!(𝑡∗ + 𝑝) is a predicted value of x1 at time t*+p, and IS0 is an intercept of the linear 
model. The linear model is fit to the other vectors in the state space. However, points that are 
close to the target point, x(t*), are given greater weighting (i.e., locally weighted linear 
regression). Note that the model is calculated separately for each time point, t. As recently 
shown, ISj, the coefficients of the local linear model, are a proxy for the interaction strength 
between variables[20]. 
     In the present study, all ASVs that have causal influences on a focal species 
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(determined by CCM) and have non-zero abundance at a target time point were included in 
the multivariate, regularized S-map. In some cases, the number of causal species exceed the 
optimal E. In that case, I simply added all the detected causal species in the S-map. 
Nonetheless, in the present study, the number of variables (= the number of causal species for 
a target species at each time point) included in each S-map model was fewer than 14 for most 
target species (over 99% of all cases; see Fig. S5a), which allowed rigorous estimations of 
interaction strengths between species (i.e., the number of data point, 610, is greater than the 
square of the embedding dimension). In the same way as with simplex projection and CCM, 
the performance of the multivariate S-map was also measured by RMSE (or a correlation 
coefficient, ρ) between observed and predicted values by the S-map (i.e., leave-one-out cross 
validation). In the present study, to reduce the possibility of overestimation and to improve 
forecasting skill, a regularized version of multivariate S-map was used [26]. 
 
 
Calculations of properties of the interaction network 
 
Properties of the reconstructed interaction network calculated include: ASV diversity, the 
number of interactions, connectance, mean interaction strength (IS) per link, mean interaction 
capacity, dynamic stability and coefficient of variation (C.V.) in population dynamics. Next, I 
give the definitions of the properties. 
     ASV diversity and the number of interactions are the number of ASVs present in a 
community and the number of interactions among ASVs present in a community, 
respectively. Connectance, C, is defined as 𝐶 = 	𝑁'()* 𝑆+⁄ , where S and Nlink indicate the 
number of species and the number of interactions (links) in a community, respectively. The 
existence of interactions was defined by significant CCM results. In addition, even if CCM 
detected significant interactions between two species, the interaction at a certain time point 
was judged absent if either or both of the species was/were absent at the time point. Mean 
interaction strength per link, ISlink, was calculated as follows: 

𝐼𝑆'()* =++2𝐼𝑆(→-2
.

(&!
(/$

.

$&!

𝑁'()*3 , 

where ISi→j indicates an S-map coefficient from ith species to jth species. Note that I took the 
absolute value of the S-map coefficient when calculating ISlink. Mean interaction capacity, IC, 
was calculated as follows: 
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Species interaction capacity is defined as the sum of interactions that a single species gives 
and receives, and mean interaction capacity of a community is the averaged species 
interaction capacity. Dynamic stability of the community dynamics was calculated as the 
absolute value of the dominant eigenvalue of the interaction matrix (i.e., local Lyapunov 
exponent) as described in a previous study [18]. C.V. of the community dynamics at time t 
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was calculated as follows: 

𝐶. 𝑉. (𝑡) =+
𝜎123,153(

𝜇123,153(

.

(&!

𝑆(𝑡),3  

where 𝜎123,153(  and 𝜇123,153(  indicate the standard deviation and mean value of the 
abundance of species i from time t–3 to t+3, respectively (i.e., one-week time window). S(t) 
is the number of ASVs at time t. 
 
 
Random shuffle surrogate test 
 
To test whether the patterns generated (e.g., in Fig. 3) are statistical artifacts, I did a random 
shuffle surrogate test. In the test, the original time series were randomly shuffled within a plot 
using the rEDM::make_surrogate_shuffle() function in the rEDM package [21,27] of R. 
Then, the same number of causal pairs was randomly assigned in a randomly shuffled 
ecological community. The regularized, multivariate S-map and subsequent analyses of the 
network properties (all identical to the original analyses) were applied to the randomly 
shuffled time series. 
 
 
Meta-analysis of biodiversity, temperature, and abundance 
 
To validate my hypothesis that the diversity is determined by interaction capacity and 
connectance, and that they are influenced by temperature and total organism abundance, I 
compiled published data from various ecosystems. The collected data include two global 
datasets and four local datasets collected in Japan: (i) global ocean microbes [28], (ii) global 
soil microbes [29], (iii) fish from a coastal ecosystem [30], (iv) prokaryotes from freshwater 
lake ecosystems [31], (v) zooplankton from a freshwater lake ecosystem [32] and (vi) benthic 
macroinvertebrates from freshwater tributary lagoon ecosystems [33]. Because the influences 
of temperature and total species abundance/biomass on community diversity (or interaction 
capacity and connectance) are likely to be nonlinear, I adopted a general additive model [34] 
as follows: 	

log(𝑆)~𝑠(log(𝑇)) + 𝑠(log	(𝐴)), 
where S, T, A and s() indicate species diversity (or OTU diversity), temperature, an index of 
total species abundance (or biomass) and a smoothing term, respectively. The relationships 
between diversity, temperature and total abundance were analyzed using the model described 
in the main text. GAM was performed using the “mgcv” package of R [34]. 
     Data analyzed in the meta-analysis were collected from the publications or official 
websites [28,32], or provided by the authors of the original publications [29–31,33]. 
Therefore, raw data for the meta-analysis are available from the original publications, or upon 
reasonable requests to corresponding authors of the original publications. Scripts for the 
meta-analysis are available in Github (https://github.com/ong8181/interaction-capacity) and 
Zenodo (https://doi.org/10.5281/zenodo.5867264). 
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