
   

Supplementary Material 

S1 Calculating S2 

  S 2  is defined as the limit as the correlation function approaches infinity, that is 

   
S 2 = lim

t→∞
C intern (t) = lim

t→∞
P2(
!
µ(τ ) ⋅

!
µ(t +τ ))

τ
, (1) 

Here,   P2(x) = (3x2 −1) / 2  is the second Legendre polynomial, and   
!
µ(τ )  is a normalized vector that 

indicates the direction of the principle component of the interaction tensor at time τ . The dot product 
   
!
µ(τ ) ⋅

!
µ(t +τ )  then yields the cosine of the angle between the vector at times τ  and  t +τ . When 

these times are infinitely far apart, they are completely uncorrelated. Thus, the probability of a given 
orientation at either time is given simply by the equilibrium distribution of orientations. Suppose 
  
!
µ(β ,γ )  is the orientation corresponding to Euler angles β and γ (for a symmetric tensor, α is 
undefined for rotation of the tensor from its principle axis), then the probability density of that 
orientation is defined here as   

peq (β ,γ ) . Then, to obtain   S 2 , we must simply integrate over all 

possible starting orientations and all possible final orientations, weighted by probabilities   
peq (β ,γ ) , 

yielding the following integral. 

   
S 2 = sinβ2 dβ2 dγ 2 peq (β1,γ 1) sinβ1 dβ1 dγ 1 peq (β1,γ 1)

0

2π

∫
0

π

∫ P2(
!
µ(β1,γ 1) ⋅

!
µ(β2 ,γ 2 )

0

2π

∫
0

π

∫ ) , (2) 

This result may also be represented as a discrete summation over possible orientations (
   
peq (
!
µi )  is 

now simply a probability, not a probability density): 

   
S 2 = peq (

!
µi ) peq (

!
µ j )P2(

!
µi ⋅
!
µ j )

j
∑

i
∑   (3) 

 

S2 Calculating  Sr  

  Sr  is not, by definition, the same quantity as S, and instead is defined as the ratio of the anisotropy of 
a residual tensor that has been averaged by motion, divided by the anisotropy of the rigid tensor (

  
Sr = δ resid. / δ rigid )  Calculation of Sr generally requires calculation of all components of the residual 
tensor, followed by transformation of the residual tensor into its own principle axis system (PAS), 
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where finally  δ resid.  may be easily extracted and divided by 
 
δ rigid . The first step, calculation of all 

components of the residual tensor, is achieved using the following formula. 

  
Ap =

3
2
δ 1

2π
dγ sinβ dβ peq (β ,γ )D0 p

2 (0,β ,γ )
0

π

∫
0

2π

∫   (4) 

We do not include a general solution for transformation back into the PAS of the residual tensor, but 
for the cases treated below, we will find a solution for the specific case is relatively straightforward 
(in its PAS, δ is determined from the 0-component of the tensor,   A0

PAS = 3/ 2δ resid. ).  

S3 General relationship between S2 and Sr for symmetric motion 

Given a 3-fold or higher axis of symmetry around some axis (taken here to be along z-axis), we find 
that both   S 2  and  Sr  are functions only of the distribution over β angles, and can further show that 

  S
2 = Sr

2 . In general, for N fold symmetry, the distribution must satisfy 

  
peq (β ,γ + 2π / N ) = peq (β ,γ ) for all γ .  (5) 

Then, we may calculate  Sr  by first obtaining the terms 
 
Ap : 

  

Ap =
3
2
δ sinβ dβ dγ peq (β ,γ )D0 p

2 (0,β ,γ )
0

2π

∫
0

π

∫

= 3
2
δ sinβ dβ dγ peq (β ,γ )d0 p

2 (β )e− ipγ

2πn/ N

2π (n+1)/ N

∫
n=0

N−1

∑
0

π

∫
.  (6) 

We have first broken the inner integral into N parts. Given that 
  
peq (β ,γ + 2π / N ) = peq (β ,γ ) , we 

may shift the bounds of the inner integrals to always sweep from 0 to   2π / N  without needing to 
change the probability density. We will need to replace   exp(−ipγ )  with   exp(−ip(γ + 2πn / N )) . 
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Ap =
3
2
δ sinβ dβ dγ peq (β ,γ )d0 p

2 (β )e− ip(γ +2πn/ N )

0

2πn/ N

∫
n=0

N−1

∑
0

π

∫

= 3
2
δ sinβ dβ dγ peq (β ,γ )d0 p

2 (β ) e− ip(γ +2πn/ N )

n=0

N−1

∑
0

2πn/ N

∫
0

π

∫

e− ip(γ +2πn/ N )

n=0

N−1

∑ = Nδ p

Ap =
3
2
δ sinβ dβ dγ peq (β ,γ )d0 p

2 (β )N
0

2πn/ N

∫
0

π

∫ p = 0

0 otherwise

⎧

⎨
⎪

⎩
⎪

.  (7) 

The summation over n of   exp(−ip(γ + 2πn / N ))  always yields 0, unless p=0, in which case the 
exponential itself is one, and therefore the sum over N terms simply yields N. Therefore, only the 
term   A0  survives, so that this term will determine   Sr . Then, the only remaining term that is a 
function of γ  is the probability density itself. Integration over γ  from 0 to 2π must convert 

  
peq (β ,γ )  into the probability density as a function of β  alone (  

peq (β ) ), that is  

  
peq (β ,γ )dγ

0

2π

∫ = peq (β ) .  (8) 

However, we only integrate from 0 to   2πn / N , yielding   
peq (β ) / N . This is cancelled by 

multiplication with N. Then, the inner integral vanishes, yielding 

  

A0 =
3
2
δ sinβ dβ peq (β )

3cos2 β −1
20

π

∫

Sr = A0 / ( 3 / 2δ ) = − 1
2
+ 3

2
sinβ dβ peq (β )cos2 β

0

π

∫
.  (9) 

Further simplification is not possible without an explicit form of the distribution over β . 

For comparison, we also evaluate   S 2 . 
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S 2 = sinβ2 dβ2 sinβ1 dβ1 dγ 2 dγ 1 peq (β2 ,γ 2 ) peq (β1,γ 1)P2(
!
µ(β1,γ 1) ⋅

!
µ(β2 ,γ 2 ))

0

2π

∫
0

2π

∫
0

π

∫
0

π

∫

= sinβ2 dβ2 sinβ1 dβ1 dγ 2 dγ 1 peq (β2 ,γ 2 ) peq (β1,γ 1)
2πn/ N

2π (n+1)/ N

∫
2πm/ N

2π (m+1)/ N

∫
n=0

N−1

∑
m=0

N−1

∑
0

π

∫
0

π

∫

                                P2 sβ1sβ1cγ 1cγ 1 + sβ1sβ1sγ 1sγ 1

=sβ1sβ 2 cos(γ 1−γ 2 )
" #$$$$ %$$$$

+ cβ1cβ1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

  
(10) 

Due to symmetry of the probability density over  γ 1  and  γ 2 , again we may adjust its integration 
bounds to always run from 0 to   2π / N , although we need to offset the change in integration bounds 
within the term  cos(γ 1 −γ 2 )   (symmetry allows us to replace 

  
peq (β ,γ + 2πn / N ) = peq (β ,γ ) ). Then, 

we may expand   P2(x) = (3x2 −1) / 2 , and extract all terms not depending on  γ 1,γ 2  (thus integrating 
over  γ 1,γ 2 , eliminating this integral for some terms). 

  

S 2 = sinβ2 dβ2 sinβ1 dβ1 dγ 2 dγ 1 peq (β2 ,γ 2 ) peq (β1,γ 1)
0

2π / N

∫
2πm/ N

2π (m+1)/ N

∫
n=0

N−1

∑
m=0

N−1

∑
0

π

∫
0

π

∫
                                P2 sβ1sβ 2 cos((γ 1 + 2πn / N )−γ 2 )+ cβ1cβ1( )
= sinβ2 dβ2 sinβ1 dβ1 dγ 2 dγ 1 peq (β2 ,γ 2 ) peq (β1,γ 1)

0

2π / N

∫
2πm/ N

2π (m+1)/ N

∫
n=0

N−1

∑
m=0

N−1

∑
0

π

∫
0

π

∫

                                
1
2

3 sβ1sβ 2 cos((γ 1 + 2πn / N )−γ 2 )+ cβ1cβ1( )2
−1⎡

⎣⎢
⎤
⎦⎥

= − 1
2
+ 3

2
sinβ2 dβ2 sinβ1 dβ1 peq (β2 ) peq (β1)cosβ1

2 cosβ2
2

0

π

∫
0

π

∫

     sinβ2 dβ2 sinβ1 dβ1 dγ 2 dγ 1 peq (β2 ,γ 2 ) peq (β1,γ 1)
0

2π / N

∫
2πm/ N

2π (m+1)/ N

∫
m=0

N−1

∑
0

π

∫
0

π

∫

                                
3
2

sβ1
2 sβ 2

2 cos2((γ 1 + 2πn / N )−γ 2 )+ cβ1cβ1sβ1sβ 2 cos((γ 1 + 2πn / N )−γ 2 )⎡⎣ ⎤⎦
n=0

N−1

∑

  (11) 

With 3 fold or higher symmetry, the sum over the cosine term yields zero, and the cosine-squared 
term yields N/2: 
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cos((γ 1 + 2πn / N )−γ 2 )
n=0

N−1

∑ = 0

cos2((γ 1 + 2πn / N )−γ 2 )
n=0

N−1

∑ = 1
2

1+ cos 2((γ 1 + 2πn / N )−γ 2 )( )
n=0

N−1

∑ = N / 2

S 2 = − 1
2
+ 3

2
sinβ2 dβ2 sinβ1 dβ1 peq (β2 ) peq (β1)cosβ1

2 cosβ2
2

0

π

∫
0

π

∫

    +
3
2

 sinβ2 dβ2 sinβ1 dβ1 dγ 2 dγ 1 peq (β2 ,γ 2 ) peq (β1,γ 1)
N
2

sin2 β1 sin2 β2
0

2π / N

∫
2πm/ N

2π (m+1)/ N

∫
m=0

N−1

∑
0

π

∫
0

π

∫

= − 1
2
+ 3

2
sinβ2 dβ2 sinβ1 dβ1 peq (β2 ) peq (β1)cosβ1

2 cosβ2
2

0

π

∫
0

π

∫

               +
3
4

 sinβ2 dβ2 sinβ1 dβ1 peq (β2 ) peq (β1)sin2 β1 sin2 β2
0

π

∫
0

π

∫

  (12) 

The integrals over  γ 1,  γ 2  each yield   1/ N , which is canceled either by the term   N / 2  or the 
summation over  N . The two double integrals are each separable into the product of two equal terms, 
yielding 

  

S 2 = − 1
2
+ 3

2
sinβ dβ peq (β )cos2 β

0

π

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

+ 3
4

sinβ dβ peq (β )sin2 β
0

π

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

= − 1
2
+ 3

2
sinβ dβ peq (β )cos2 β

0

π

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

+ 3
4

sinβ dβ peq (β )(1− cos2 β )
0

π

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

= 9
4

sinβ dβ peq (β )cos2 β
0

π

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

− 3
2

sinβ dβ peq (β )cos2 β
0

π

∫ + 1
4

= − 1
2
+ 3

2
sinβ dβ peq (β )cos2 β

0

π

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

= Sr
2

  
(13) 

Then, we see generally that given a 3-fold or higher axis of symmetry, we obtain   S
2 = Sr

2 , and 
furthermore we may obtain these values simply from the distribution over β . 

S4 Obtain S for Explicit Models 

S4.1 Wobbling on a cone 

Wobbling on a cone is described by a distribution with a single β angle and a uniform distribution 
over γ, such that 
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peq
woc (β ,γ ) = 1

2π sinβ
δ (β − βwoc )

peq
woc (β ) = δ (β − βwoc )

sinβ

S = − 1
2
+ 3

2
sinβ dβ δ (β − βwoc )

sinβ
cos2 β

0

π

∫

= − 1
2
+ 3

2
cos2 βwoc

  (14) 

S4.2 Wobbling in a cone 

The wobbling in a cone distribution is a uniform distribution of β angles, for all angles less than some 
maximum angle,  β

wic . Then, we may calculate   S 2  as 

  

peq
wic (β ,γ ) =

1
2π (1− cosβwic )

 if β < βwic

0 otherwise

⎧

⎨
⎪

⎩
⎪

peq
wic (β ) =

1
(1− cosβwic )

 if β < βwic

0 otherwise

⎧

⎨
⎪

⎩
⎪

S = − 1
2
+ 3

2
1

(1− cosβwic )
sinβ dβ cos2 β

0

βwic

∫

= − 1
2
+ 3

2
1

(1− cosβwic )
− 1

3
⎛
⎝⎜

⎞
⎠⎟

cos3β
0

βwic

= − 1
2
+ 1

2
1− cos2 βwic

1− cosβwic = − 1
2
+ 1

2
(1− cosβwic )(1+ cosβwic + cos2 βwic )

1− cosβwic

= 1
2

cosβwic (1+ cosβwic )

  (15) 

S4.3 Two-site hopping 

Two-site hopping differs considerably from the examples so far, since it does not have a 3-fold 
symmetry axis. Therefore,   S 2  and   Sr  are not easily related. We begin by defining the distribution, 

which allows for different populations of the two sites, followed by calculation of   S 2 . Here,   δ (x)  is 
the Dirac delta. 
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peq
hop(β ,γ ) = p1δ (β )+ (1− p1)δ (β − β hop )( )δ (γ )

S 2 = dγ 2 sinβ2 dβ2 peq
model (β1,γ 1) dγ 1 sinβ1 dβ1 peq (β1,γ 1)

0

π

∫
0

2π

∫ P2(
!
µ(β1,γ 1) ⋅

!
µ(β2 ,γ 2 )

0

π

∫
0

2π

∫ )

= p1
2 + (1− p1)2( )P2(0)

initial/final state same
" #$$$ %$$$

+ 2 p1(1− p1)P2(cosβ hop )
initial/final state different

" #$$$$ %$$$$

= 2 p1
2 − 2 p1 +1− 1

2
2 p1 − p1

2( ) + 3p1 1− p1( )cos2 β hop

= 1+ 3p1( p1 −1)+ 3p1 1− p1( )cos2 β hop

= 1+ 3p1(1− p1)(cos2 β hop −1)

  (16) 

For equal populations (  p1 = 1− p1 = 0.5 ), this reduces to the more familiar  
1
4 + 3

4 cos2 β hop . We may 
also solve for   Sr , beginning with a solution for all terms 

 
Ap . 

   

Ap / ( 3 / 2δ ) = sinβ dβ dγ peq (β ,γ )d0 p
2 (β )e− ip(γ +2πn/ N )

0

2πn/ N

∫
n=0

N−1

∑
0

π

∫
= p1 d0 p

2 (0)
=δ p

!"#
+ (1− p1)d0 p

2 (β hop )
.  (17) 

Due to the lack of symmetry, the terms 
 
Ap  for   p ≠ 0  do not vanish. Thus, we must find a rotation 

that brings the terms representing the residual tensor back into its own frame. For the residual tensor 
to be in its own frame, the terms   A±1  must be zero, and furthermore,   A±2 = −δη / 2  cannot have 

magnitude larger than 
  
A0 / 6 = 3/ 2δ( ) / 6 = δ / 2  since η  may not exceed 1. This prevents the 

absolute value of  Sr  from falling below 0.5. We first attempt this with a rotation around y, using  β
0 . 
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0 = A1
PAS / ( 3 / 2δ ) = dq1

2 (−β 0 ) p1d0,q
2 (0)+ (1− p1)d0q

2 (β hop )( )
q=−2

2

∑

0 = p1d01
2 (−β 0 )+ (1− p1) d0q

2 (β hop )dq1
2 (−β 0 )

q=−2

2

∑
d01

2 (β hop−β0 )

! "### $###

0 = p1

3
8

sin(−2β 0 )+ (1− p1)
3
8

sin 2(β hop − β 0 )( )
p1

p1 −1
=

sin 2(β hop − β 0 )( )
sin(2β 0 )

p1

p1 −1
= sin(2β hop )cos(2β 0 )− cos(2β hop )sin(2β 0 )

sin(2β 0 )

p1

1− p1

+ cos(2β hop ) = cot(2β 0 )sin(2β hop )

cot(2β 0 ) =
p1 + (1− p1)cos(2β hop )

(1− p1)sin(2β hop )

β 0 = arctan
(1− p1)sin(2β hop )

p1 + (1− p1)cos(2β hop )

⎛

⎝⎜
⎞

⎠⎟
/ 2

.  (18) 

Then, we may insert to solve for   A0
PAS . 

   

Sr = A0
PAS / ( 3 / 2δ ) = dq0

2 (−β 0 ) p1d0q
2 (0)+ (1− p1)d0q

2 (β hop )( )
q=−2

2

∑

Sr = p1d00
2 (−β 0 )+ (1− p1) d0q

2 (β hop )dq0
2 (−β 0 )

q=−2

2

∑
d00

2 (β hop−β0 )

! "### $###

Sr = p1

3cos2 β 0 −1
2

⎛
⎝⎜

⎞
⎠⎟
+ (1− p1)

3cos2(β hop − β 0 )−1
2

⎛
⎝⎜

⎞
⎠⎟

.  
(19) 

However, this result is only correct if the formula yields   Sr ≥ 0.5 , otherwise   Sr = −0.5 . Clearly, then, 

  S 2  and   Sr
2  are not equal except for special cases. 
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S5  Extracting the correlation function from an exchange matrix 

In order to generate Figure 2, we need to know what correlation times arise, and need to obtain their 
corresponding amplitudes. We outline the procedure here, noting that we then discretize the 
continuous models (wobbling-on-a-cone, wobbling-in-a-cone), to estimate the distribution of 
correlation times. 

Suppose we have an exchange matrix,   k ex , whose elements express the rate constants for exchange 
between various pairs of Euler angles ( Ω ={0,β ,γ }).  

    
d
dt
!s = k ex ⋅

!s .  (20) 

One may find the equilibrium state of the matrix, simply by solving  

    
k ex ⋅
!seq = 0 .  (21) 

Note that 
   
!
seq  should be normalized to sum to 1. Then, each element of 

   
!seq  (equilibrium for the 

exchange matrix,   k ex ) corresponds to a set of Euler angles. We may therefore use 
   
!seq  to determine 

how each combination of possible starting states and ending states contributes to   S 2 : 

   
S 2 = [!seq ]p[!seq ]q P2(

!
µ p ⋅
!
µq )

q
∑

p
∑ .  (22) 

Furthermore, the eigenvalues of the matrix   k ex  yield the decay rates of the corresponding correlation 
function, such that 

    

k ex

!
ϕm = λm

!
ϕm

C(t) = S 2 + (1− S 2 ) Am exp(−t / τ m )
m=1
∑

τ m = −1/ λm

.  (23) 

Note that one of the eigenvalues is always zero, here we index such that  λ0 = 0 , and the remaining 
eigenvalues are all negative. The zero eigenvalue is omitted from the summation, since it corresponds 
to   S 2  (

   
!seq ∝

!
ϕ0 ). Then, to fully determine the correlation function, we must find the amplitudes, 

  (1− S 2 )Am , corresponding to each of the  λm .  

We begin by determining how a system, starting in some state    
!s (0)  evolves. Using the eigenvalues 

and eigenvectors of the exchange matrix, we may express    
!s (t)  as a sum of time dependent 

amplitudes,   am(t) , multiplied by the corresponding eigenvectors. 
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!s (t) = am(t)
!
ϕm

m
∑ = amp[!s (t)]p

p
∑

m
∑

amp = [
!
ϕ0 ,
!
ϕ1,...]mp

−1
.  (24) 

Note that the terms in the summation,   am(t) , are found by computing the inverse of the matrix of 
eigenvectors, and multiplying    

!s (t)  by it. Inserting this result into differential equation for evolution 
of    
!s (t) , we obtain 

    

d
dt
!s (t) = k ex ⋅

!s (t)

d
dt

am(t)
!
ϕm

m
∑ = k ex ⋅ am(t)

!
ϕm

m
∑

d
dt

[am(t)]
!
ϕm

m
∑ = ⋅ am(t)λm

!
ϕm

m
∑

.  (25) 

We may then solve each term of the sums separately. This yields simple exponential time 
dependence. Summing together the result, we find: 

   

d
dt

am(t) = λmam(t)

am(t) = am(0)exp(λmt)
!s (t) = am(0)exp(λmt)

!
ϕm

m
∑

!s (t) = amp exp(λmt)[!s (t)]p

!
ϕm

p
∑

m
∑

[!s (t)]q = amp exp(λmt)[!s (t)]p[
!
ϕm]q

p
∑

m
∑

.  
(26) 

Then, to determine how the total amplitude of the correlation function results from the decay of an 
individual eigenstates,   

!
ϕm , we start in state p, with probability 

   
[!seq ]p , and end in state q, by going 

through the eigenstate   
!
ϕm . The contribution to the total amplitude from these pairs of states is given 

by 
   
P2(
!
µ p ⋅
!
µq ) . Then, we sum over all possible starting and ending states (p and q, respectively), but 

only traverse from p to q via eigenstate m. 
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Am(1− S 2 ) = amp[
!
ϕm]q[!seq ]p P2(

!
µ p ⋅
!
µq )

p
∑

q
∑

    = amp[
!
ϕm]q[!seq ]p P2(

!
µ p ⋅
!
µq )

p
∑

q
∑

Am(1− S 2 ) = amp[
!
ϕm]q[!seq ]p P2(

!
µ p ⋅
!
µq )

p
∑

q
∑

.  (27) 

The resulting amplitudes may be inserted into eq. (25). To validate our result, we may sum over all m 

(including the m=0 term), where we should find that the total amplitude always sums to 1. 

   

S 2

m=0
! + Am(1− S 2 )

m=1
∑ = amp[

"
ϕm]q["seq ]p P2(

"
µ p ⋅
"
µq )

p
∑

q
∑

m=0
∑

= amp[
"
ϕm]q

m=0
∑

δ p−q

# $% &%
["seq ]p P2(

"
µ p ⋅
"
µq )

p
∑

q
∑

= ["seq ]q P2(
"
µq ⋅
"
µq )

=1
# $% &%q

∑ = ["seq ]q
q
∑ = 1

.  
(28) 

The  
amp  come from the inverse of the matrix of eigenvectors,   [

!
ϕ0 ,
!
ϕ1,...]

−1 , such that the sum 

   
Σmamp[

!
ϕm]q  is one if p=q but 0 otherwise (yielding the Kronecker delta,  

δ p−q ). Then, the second 

Legendre polynomial is only evaluated for 
   
!
µq ⋅
!
µq = 1 , thus always yielding one. Finally, only a sum 

over the equilibrium populations remain, which itself must sum to 1, validating our expression for the 
contribution of eigenstate   

!
ϕm  to the total amplitude of the correlation function.  

 

 

  

 


