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Supplementary Material

for
A New Nonparametric Estimate of the Risk-Neutral

Density with Applications to Variance Swaps

A. PROOF OF PROPOSITION 2.1

We rewrite the call and put option prices in Eqs 3, 4 in terms of a1, a, . . ., ag, ag+1 as follows
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Let XZ.(ZZ) = [K;log(K;/Kj—1) — (K — K;—1)] - 1(K; > K;),l =1,2,...,q+ 1 be an entry of the design
matrix for put options; and Xi(? =[(K;— K1) — Kilog(K;/K;1)] - 1(K; < K)),l=1,2,...,q+1
for call options. From Eq. 2, a1 can be represented by a1, as, ..., ay, as
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Plugging Eq.[S3|into Eqs[ST][S2] we obtain
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where Xz'(,l) = Xi(fl)) — (log K;/K;_1)(log ek )™ 1XZ(q)H, l=1,2,...,q and Xz(q}rl = XZ.(Z)H/loch :
Similarly for call options,
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where Xi(,l ) = Xi(j) — (log K/ K;_1)(log ¢ )™ 1XZ(Q)H, l=1,...,qand XZ(qJ)rl Xz-(fl?ﬂ/log cx . O

B. PROOF OF THEOREM 3.1
Given ¢ > 0, let 61 = \/eef7 /[3(1 4 cx + €)] > 0. There exists —oo < A < 0 < B < oo, such that,

A A 00 0o
/_OO fo(z)dx < 41, /_OO e’ fo(z)dx < 41, /B fo(z)dx < 61, /B e’ fo(z)dx < &

Let §9 = \/EeRtT_B_l/[ZS(B — A+ 2)] > 0. Since fq is continuous, there exists a § > 0, such that, for
any x1,x2 € [A—1,B+1],

|fo(z1) — fo(ze)| < &2

as long as |r1 — wa| < 4.
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For small enough K7, |A| and large enough ¢, K, there exist integers u, v, such that, 1 <u < u+1 <
v<v+1<gq,logK, <A<logKyt1,log K, < B <log Ky11, |A] < 6.

We construct a fa by defining
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It can be verified that [*_ fa(z)dz = S i log(Ki/Ki—1) = 1. Let

7

Ay = max ( max fo(x) — min f@(x))

u<i<o \log Ki<a<iog Ki1 " 2" log Ki<x<log Kis1

Then |A| < ¢ implies Ay < 2. It can be verified that
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In other words, there exist a1, ..., ag+1, such that, (CA*Z — C’i)z < €, (I5i — 151’)2 <efori=1,...,q. It

implies the (ay, . .., ag+1) that minimizes L(ay, . .., ag+1) also satisfies
1 [ q
A A2 b _ P2
S 3 <o
i=1 i=1
which leads to the conclusion. U

Frontiers 3



Supplementary Material

C. PROOF OF PROPOSITION 4.1
Since B[S, RY) = Yoioy R + 3011 B[R, the key part
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Then Eq. 12 can be obtained by plugging E9[23;1 R?]into Eq. 11. O

D. LINEAR INTERPOLATION FOR 1ST AND 2ND MOMENTS IN SECTION 4.1

Mean imputation Suppose the trading day is ¢ and the expiration day is 7". We denote all possible
expiration dates of traded contracts by ¢t + n1,t 4 na, . ... Suppose the time point to be imputed is ¢ + nyg.
Given all the information available at day ¢, log S; can be regarded as its expectation at day ¢, E;@ log S;.
Therefore, we consider cases separately according to whether or not ¢ + ny is in the interval [t, ¢ + n;] and
then apply linear interpolation to obtain the mean of log S;,,. More specifically, there are two cases:

Case 1: ng € [0,n1] and ]E;@(log St4n, ) has been calculated.

(n1 — no) [E¢ (log St4n,) — log S
ny

E;Q(log Sting) = E?(log Stin,) —

_ noEg(log Stiny) + (n1 — no) log(Sk)
ny
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Case 2: ng € [nj, n;41] for some i = 1,2, . ... The expectations E?(log Styn,) and Eg(log Stini)
have already been calculated.

(no - ni)[EijQ(log St+n¢+1) - E;LQ (10g Ster)]

E2(10g Sy 4ng) = +E2(log Syim,)
Nj+1 — Ny
_ (0 — 1) (10g Siniyy) + (ni1 — n0)E¢ (log i)
Ni+1 — Ny

Variance Imputation In order to calculate the variance V?(log Sting) at day ¢, we use a similar
interpolation based on the available variances of log returns at day ¢ with expiration 7. Based on the
scatterplot (not shown here) of all available variances that we have from the existing contracts, the trend of
variances has a curved pattern against the number of days to expiration. More specifically, it is roughly a
quadratic curve. Before we implement a linear interpolation, we first perform a square-root transformation
of variances.

Case 1: ng € [0, ny]. V;@(log St+n, ) has been calculated. Then

[y Q
noy/ V- (log Stin,)
V2 (log Sy4my) = m

ni

Case 2: ng € [n;,n;+1] for some i = 1,2, . ... The values V;@(log Sti+n;) and V?(log St+n;.,) have
been calculated. Then

V;Q(log Stino)
— V(108 Sttng) =/ VE(l0g Stny) + 1/ VE(l0g Stny)

(no — ni) [\/Vg(log Stnip) — \/ Vi (log St+ni):|

= +/ Vi (log St4n,)

Nit1 — N
(no — ni)\/V9(log Sttnii) + (Mis1 — no)y/ Vi (log Stin,)
N i+l — Ty .

Then the second moment is
EP (10g St1ng)? = [E2 (108 St4ny )] + VE(l0g St-ng)

A fair price of variance swap V'S; 1 can be obtained by the pricing formula Eq. 11.
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