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1 Proof of GEN-ISTA Convergence

1.1 Proof of Lemma 1

Define

S̃c =

Sc − λ2

nccard(Dw
q )

 ∑
c′∈Dwq \{c}

Ωc′

 , γc1 =
λ1

nc
, γc2 =

λ2(card(Dw
q )− 1)

2nccard(Dw
q )

,

so that the argument minimizing the objective function for the block wise coordinate descent
step of PCEN can be expressed

arg min
Ωc∈S+p

{
tr(S̃cΩc)− log det(Ωc) + γc1‖Ωc‖1 + γc2‖Ωc‖2

F

}
, (1)

In this section we show that the optimal solution of (1) is contained on a compact subset
of Sp+. To gain a deeper understanding of the solution we obtain the dual form of (1). Define
Zc to be a symmetric p× p matrix, then (1) can be rewritten as

min
Ωc∈Sp+

tr(S̃cΩc)− log det(Ωc) + γc1 max
|vec(Zc)|∞<1

tr(ZcΩc) + γc2|Ωc|22.

Just as in Banerjee et al. (2008) we exchange the max and min to obtain the dual problem,

max
|vec(Zc)|∞<1

min
Ωc∈Sp+

tr{(S̃c + γc1Zc)Ωc} − log det(Ωc) + γc2|Ωc|22. (2)

Notice that the optimization problem in (2) with respect to Ωc is just a ridge penalized
precision matrix estimation problem with tuning parameter γc2, which was investigated by
(Witten and Tibshirani, 2009). Define

Q(A, η) = arg min
Θ∈Sp+

{
tr(AΘ)− log det(Θ) + η|Θ|22

}
,

Bradley S. Price, Management Information Systems Department, West Virginia University (E-Mail:
brad.price@mail.wvu.edu). Aaron J. Molstad, Department of Statistics and Genetics Institute, University
of Florida (E-mail: amolstad@ufl.edu). Ben Sherwood, School of Business, University of Kansas (E-mail:
ben.sherwood@ku.edu).

1



and Ω̇Zc = Q(S̃c + γc1Zc, γc2), then the dual problem is

max
|vec(Zc)|∞<1

tr{(S̃c + γc1Zc)Ω̇Zc} − log det(Ω̇Zc) + γc2|Ω̇Zc|22. (3)

Now we are able to show the result.

Proof. Define

q(a, η) =
−a+

√
a2 + 8η

4η
.

Note that q(a, η) > 0 for all a ∈ R when η > 0 and given some b ∈ R such that b < a

then q(a, η) > q(b, η) > 0. Let Ẑc be the solution to (3). Then we are able to rewrite

Ω∗c = Ω̇Ẑc
= Q(S̃c+γc1Ẑc, γc2) = V D̂V T , where V is a matrix of the eigenvectors of S̃c+γc1Ẑc,

and D̂ is a diagonal matrix with jth diagonal equal to q
(
ρj(S̃c + γc1Ẑc), γc2

)
(Witten and

Tibshirani, 2009).
To complete the proof all that is left to do is bound the cases of j = 1 and j = p. Weyl’s

Theorem provides the inequalities

ρp(S̃c) + γc1ρp(Ẑc) ≤ ρp(S̃c + γc1Ẑc), (4)

and
ρ1(S̃c + γc1Ẑc) ≤ ρ1(S̃c) + γc1ρ1(Ẑc). (5)

Then, using the inequality
−p ≤ ρp(Ẑc) ≤ ρ1(Ẑc) ≤ p,

combined with (4) and (5) yields

0 < q(ρp(S̃c)− γc1p, γc2) ≤ q(ρp(S̃c) + γc1ρp(Ẑc), γc2)

≤ q(ρ1(S̃c) + γc1ρ1(Ẑc), γc2) ≤ q(ρ1(S̃c) + γc1p, γc2) <∞.

These resulting bounds are for eigenvalues of Ω∗. Inverting the bounds (in order to simplify
the expressions) yields the result of the lemma.

1.2 Lipschitz Continuity of the 5f(Ω)

In this section, we prove of Lemma 2 from the main mauscript.

Proof. Assume aI � ΩA,ΩB � bI, for some ΩA,ΩB ∈ Sp+ and a > 0 and b < ∞. Applying
Lemma 2 of Rolfs et al. (2012), we have that

1

b2
‖ΩA − ΩB‖2 ≤ ‖Ω−1

A − Ω−1
B ‖2 ≤

1

a2
‖ΩA − ΩB‖2.
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Thus, we have

‖ 5 f(ΩA)−5f(ΩB)‖F = ‖Ω−1
B − Ω−1

A + 2γc2(ΩA − ΩB)‖F
≤ √

p‖Ω−1
B − Ω−1

A + 2γc2(ΩA − ΩB)‖2

≤ √
p‖Ω−1

B − Ω−1
A ‖2 + 2

√
pγc2‖ΩA − ΩB‖2

≤
√
p

a2
‖ΩA − ΩB‖2 + 2

√
pγc2‖ΩA − ΩB‖2

≤
(√

p

a2
+ 2
√
pγc2

)
‖ΩA − ΩB‖F .

1.3 Proof of Theorem 1

First, we will provide a general result that we use to establish the linear convergence rate of
our algorithm.

Lemma 4. Assume that iterates of the algorithm proposed satisfy aI � Ω
(k)
c � bI for all k

and some fixed constants 0 < a < b <∞. If t ≤ a2

2α2γc2+1
then:

1.

‖Ω(k+1)
c − Ω∗c‖F ≤ max

{∣∣∣∣mt −
t

a2

∣∣∣∣ , ∣∣∣∣mt −
t

b2

∣∣∣∣} ‖Ω(k)
c − Ω∗c‖F ,

where mt = 1− 2tγc2.

2. The step size t that will lead to the optimal worst-case bound is tw = 2
4γc2+b−2+a−2 .

3. The optimal worst case bound is

1− 2

1 + 2γc2+a−2

2γc2+b−2

< 1.

We present the full proof in Section 1.3.1, but first, we make a number of important
remakrs. First, we note that if γc2 = 0, then our result is equivalent to the bounds of Rolfs
et al. (2012). Second, we point out that as γc2 →∞, the optimal worst case bounds approach
0. Finally, as γc2 gets larger the maximum step size that is applicable also approaches 0.

1.3.1 Proof of Lemma 4

Our proof strategy is similar to that of Rolfs et al. (2012) but there are differences due to
the ridge penalty.

Proof. Recall that Ω∗c = S{Ω∗c − t(S̃c − (Ω∗c)
−1 + 2γΩ∗c), tγc1}. Let Σ∗c = [Ω∗c ]

−1 and Σ
(k)
c =

[Ω
(k)
c ]−1. By the definitions of Ω

(k+1)
c and Ω

(k+ 1
2

)
c and Lemma 2.2 from Combettes and Wajs
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(2005)

‖Ω(k+1)
c − Ω∗c‖F = ‖S(Ω

(k+ 1
2

)
c , tγc1)− S{Ω∗c − t(S̃c − Σ∗c + 2γΩ∗c), tγc1}‖F

≤ ‖Ω(k+ 1
2

)
c − {Ω∗c − t(S̃c − Σ∗c + 2γΩ∗c)}‖F

= ‖Ω(k+ 1
2

)
c + tS̃c − {(1− 2tγ)Ω∗c + tΣ∗c}‖F

= ‖Ωk
c − t{S̃c − Σ(k)

c + 2γc2Ω(k)
c }+ tS̃c − {(1− 2tγ)Ω∗c + tΣ∗c}‖F

= ‖{Ω(k)
c − t

(
2γc2Ω(k)

c − Σ(k)
c

)
} − {Ω∗c − t (2γc2Ω∗c − Σ∗c)}‖F

= ‖{(1− 2tγc2)Ω(k)
c + tΣ(k)

c } − {(1− 2tγc2)Ω∗c + tΣ∗c}‖F .

If h : U ⊂ Rp2 → Rm is a differentiable mapping with Jacobian Jh, x, y ∈ U and
vx+ (1− v)y ∈ U for all v ∈ [0, 1], then

‖h(x)− h(y)‖2 ≤ sup
v∈[0,1]

{‖Jh(vx+ (1− v)y)‖2}‖x− y‖2.

Recall mt = 1− 2tγc2 and define

hγc1,γc2{vec(Ωc)} = mt vec(Ωc) + t vec(Ω−1
c ).

Note that,
Jhγc1,γc2 (Ωc) = mtIp2 − tΩ−1

c ⊗ Ω−1
c .

For v ∈ [0, 1] let
Hk,v = vec{vΩ(k)

c + (1− v)Ω∗c},

it follows that

‖hγc1,γc2(Ω(k)
c )− hγc1,γc2(Ω∗c)‖2 ≤ sup

v∈[0,1]

{‖mtIp2 − tH−1
v,k ⊗H

−1
v,k‖2}‖Ω(k)

c − Ω∗c‖F .

Therefore, for any value of k and v

min{ρp(Ω(k)
c ), ρp(Ω

∗
c)} ≤ ρp(Hk,v) ≤ ρ1(Hk,v) ≤ max{ρ1(Ω(k)

c ), ρ1(Ω∗c)}.

Combining these results, we obtain

sup
v∈[0,1]

{‖mtIp2 − tH−1 ⊗H−1‖2} ≤ max

{∣∣∣∣mt −
t

b2

∣∣∣∣ , ∣∣∣∣mt −
t

a2

∣∣∣∣} ,
which proves part 1 of Lemma 4. We can further show that the algorithm converges linearly
if

s(t) = max

{∣∣∣∣mt −
t

b2

∣∣∣∣ , ∣∣∣∣mt −
t

a2

∣∣∣∣} ∈ (0, 1), ∀k.
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The minimum of s(t) is obtained at

tw =
2

4γc2 + b−2 + a−2
,

and then evaluating s(tw) completes the result.

1.3.2 Proof of Lemma 3

In this section we assume that the eigenvalues of Ω
(k)
c are bounded for all k and recall that,

letting Σ
(k)
c ≡ (Ω

(k)
c )−1,

Ω
(k+ 1

2
)

c = Ω(k)
c − t(S̃c − Σ(k)

c + 2γc2Ω(k)
c ). (6)

Lemma 5. Assume 0 < a < b < ∞ are known such that aI � Ω
(k)
c � bI, and that t > 0.

Then the eigenvalues of Ω
(k+ 1

2
)

c , which is defined by (6), satisfy:

ρp(Ω
(k+ 1

2
)

c ) ≥


√

t
1−2tγc2

− t√
t

1−2tγc2

− tρ1(S̃c), if a ≤
√

t
1−2tγc2

≤ b

min
{
mta+ t

a
,mtb+ t

b

}
− tρ1(S̃c) otherwise

and

ρ1(Ω
(k+ 1

2
)

c ) ≤ max

{
mta+

t

a
,mtb+

t

b

}
− tρp(S̃c).

Proof. Define the spectral decomposition of Ω
(k)
c = UDUT , then

Ω
(k+ 1

2
)

c = Ω(k)
c − t(S̃c − Σ(k)

c + 2γc2Ω(k)
c )

= UDUT − t(S̃c − UD−1UT + 2γc2UDU
T )

= U{D − t(UT S̃cU −D−1 + 2γc2D)}UT .

Next, by Wyel’s Theorem it follows that

ρp(Ω
(k+ 1

2
)

c ) ≥ ρp(Ω
(k)
c )− t

{
2γc2ρp(Ω

(k)
c )− 1

ρp(Ω
(k)
c )

+ ρ1(S̃c)

}
,

and

ρ1(Ω
(k+ 1

2
)

c ) ≤ ρ1(Ω(k)
c )− t

{
2γc2ρ1(Ω(k)

c )− 1

ρ1(Ω
(k)
c )

+ ρp(S̃c)

}
.

Recalling that mt = 1− 2tγc2, the function

r(x) = mtx+
t

x
, a ≤ x ≤ b,
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has a global minimum at xw =
√

t
1−2tγc2

. Thus, using arguments similar to Rolfs et al. (2012)

proof of Lemma 4, we have that

ρp(Ω
(k+ 1

2
)

c ) =


√

t
1−2tγc2

− t√
t

1−2tγc2

− tρ1(S̃c), if a ≤
√

t
1−2tγc2

≤ b

min
{
mta+ t

a
,mtb+ t

b

}
− tρ1(S̃c) otherwise

and

ρ1(Ω
(k+ 1

2
)

c ) ≤ max

{
mta+

t

a
,mtb+

t

b

}
− tρp(S̃c),

which obtain the bounds.

Next we need to show that when the full step is taken by soft thresholding the eigenvalues
are bounded.

Lemma 6. Assume 0 < a < b and t,mt = 1 − 2tγc2 > 0 then min
{
mta+ t

a
,mtb+ t

b

}
=

mta+ t
a

if and only if t ≤ ab
1+2γc2ab

Proof. Using the assumptions we have that

mta+
t

a
≤ mtb+

t

b
⇐⇒ t

(
1

a
− 1

b

)
≤ mt(a− b)

⇐⇒ t ≤ mtab

⇐⇒ t ≤ ab

1 + 2γc2ab
.

from which the result follows.

Next, for the sake of convenience, we restate Lemma 6, a useful result on soft-thresholding,
from the Supplementary Material of Rolfs et al. (2012).

Lemma 7. Let A be a symmetric p× p matrix and δ > 0. Then the soft-thresholded matrix
S(A, δ) satisfies ρp(A)− δp ≤ ρp{S(A, δ)}. Moreover, the soft-thresholded matrix is positive
definite if ρp(A) > δp (Rolfs et al., 2012).

Proof. Proof is in the supplementary material of Rolfs et al. (2012).

Lemma 8. Let γc1 > 0 and α be the same as defined in Lemma 1. Assume α < b′ and
αI � Ω

(k)
c � b′I and recall that

Ω(k+1)
c = S(Ω

(k+ 1
2

)
c , tγc1),

where Ω
(k+ 1

2
)

c is defined by (6). Then for every 0 < t ≤ α2

2+γc2α2+1
, then αI � Ω

(k+1)
c .
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Proof. Lemma 6 gives us

min

{
mtα +

t

α
,mtb+

t

b′

}
= mtα +

t

α
.

since t ≤ α2

2γc2α2+1
≤ αb′

2γc2αb′+1
. Note that 0 < t ≤ α2

2γc2α2+1
guarantees that

√
t

1−2tγc2
≤ α.

Therefore by Lemma 5

ρp(Ω
(k+ 1

2
)

c ) ≥ mtα +
t

α
− tρ1(S̃c).

We continue by applying Lemma 7 to Ω
(k+1)
c where we obtain

ρp(Ω
(k+1)
c ) ≥ ρp(Ω

(k+ 1
2

)
c )− pγc1t

≥ mtα +
t

α
− tρ1(S̃c)− pγc1t.

Therefore, we have that αI � Ω
(k+1)
c when

mtα +
t

α
− tρ1(S̃c)− pγc1t ≥ α,

or equivalently

−2γc2tα +
t

α
− tρ1(S̃c)− pγc1t ≥ 0.

Since t > 0 we may reorganize this a final time as

−2γc2α +
1

α
−
(
ρ1(S̃c) + pγc1

)
≥ 0.

Solving for α we have that αI � Ω
(k+1)
c if

α ≤ 1

q(ρ1(S̃c) + γc1p, 2γc2)
,

which holds by Lemma 1.

Lemma 9. Let α be the same as in Lemma 1 and t ≤ α2

2+γc2α2+1
. The the proposed algorithm

iterates satisfy Ω
(k)
c � b′I for all k where b′ = ‖Ω∗c‖2 + ‖Ω(0)

c − Ω∗‖F .

Proof. Using results from Lemma 1 and Lemma 8 we have that

Λ+
k = max{ρ1(Ω(k)

c ), ρ1(Ω∗c)} > Λ−k = min{ρp(Ω(k)
c ), ρp(Ω

∗
c)} ≥ α2.
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Since t ≤ α2

2+γc2α2+1
,

max

{∣∣∣∣1− t

b2

∣∣∣∣ , ∣∣∣∣1− t

a2

∣∣∣∣} ≤ 1.

Next, by applying Theorem 3

‖Ω(k)
c − Ω∗c‖F ≤ ‖Ω(k−1)

c − Ω(k)
c ‖F .

Finally we have that,

‖Ω(k)
c ‖2 − ‖Ω∗c‖2 ≤ ‖Ω(k)

c − Ω∗c‖2 ≤ ‖Ω(0)
c − Ω∗c‖F ,

from which we obtain the bound

ρ1(Ω(k)
c ) ≤ ‖Ω∗c‖2 + ‖Ω(0)

c − Ω∗c‖F .

Finally we will formally prove Lemma 3.

Proof. Applying the results of Lemma 8 and Lemma 9 we have that

αI � Ω(k)
c � b′I,

and
b′ ≤ ‖Ω∗c‖2 +

√
p‖Ω(0)

c − Ω∗c‖2 ≤ β +
√
p(β − α).

2 GEN-ISTA Algorithm with Backtracking

We now state the GEN-ISTA algorithm with backtracking line search. Recall that Σ
(k)
c ≡

(Ω
(k)
c )−1.

1. Initialize, k = 0, η ∈ (0, 1), ε > 0, t0 > 0, and Ω
(0)
c ∈ Sp+.

2. While |f(Ω
(k)
c )− f(Ω

(k+1)
c )| > ε or k < 1

(a) Set t = t0

(b) Ω
(k+ 1

2
)

c = Ω
(k)
c − t{S̃c − Σ

(k)
c + 2γc2Ω

(k)
c }

(c) Ω
(k+1)
c = S(Ω

(k+ 1
2

)
c , tγc1)

(d) If Ω
(k+1)
c 6∈ Sp+, then update t = tη and return to Step 2 (b). Else, continue to

Step 2 (e)
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(e) If f(Ω
(k+1)
c )− f(Ω

(k)
c ) > + tr{(Ω(k+1)

c −Ω
(k)
c )T (S̃c −Σ

(k)
c + 2γΩ

(k)
c )}+ 1

2t
‖Ω(k+1)

c −
Ω

(k)
c ‖F , then update t = tη and return to Step 2 (b). Else, continue to Step 2 (f).

(f) If not converged, update k = k + 1 and return to Step 2 (a).

3 Additional simulation results

3.1 Gaussian graphical model simulation: Two clusters, block di-
agonal structures

In the final setting, we again assume a data generating model where the four precision
matrices are divided into two groups. We generate Ω∗1 such that it is block diagonal with
each block size of p/2 × p/2. The first block is generated using U = E(A1, p/2), and the
second block is the identity matrix, where A1 is an adjacency matrix from an Erdos Renyi,
with p/2 connections. Using Ω∗1 we generate Ω∗2 such that it is block diagonal with block
size p/2×p/2. We define the upper block of Ω∗2 as R (A3, L, (−.01, .01)), and the lower block
to be the identity where A3 is the adjacency matrix A1 with four edges removed. Next, Ω∗3
is generated in a similar way to Ω∗1 and Ω∗4 is generated from Ω∗3 in the same fashion Ω∗2
is generated from Ω∗1.

The results in panels (e) and (f) Figure 1 are average log sum of squared Frobenius norm
error and the average true positive rate as the number of non-zero elements in the precision
matrices varying with p = 100 and n = 200. The results for the case of p = 20 and p = 50
can be found in the Supplementary Material. Results exhibit a similar pattern to the results
displayed in Sections 4.2-4.4 For certain values of λ2, PCEN-2 is competitive in estimation
and graph recovery with the other methods, specifically LASICH-OR. As p increases, we see
the estimation and graph recovery of PCEN decreases relative to LASICH-OR, but is still
competitive with other competitors. Again, this can be attributed to LASICH-OR having
oracle information and its use of the group penalty which exploits similar sparsity patterns
across all precision matrices.

3.2 Timing Results of PCEN

In this section we present results of the timing results from the simulations found in Section 4
of the manuscript. Figures 2-5 present the average time in seconds for convergence for PCEN
with Q = 2 and PCEN Q = 3 for λ2 ∈ 10{−3,1,3} and λ1 that varies. Figure 2 represents
timings associated with the simulation presented in Section 4.2, Figure 3 presents the results
associated with the simulation described in Section 4.3, Figure 4 shows the results of the
simulation described in Section 3.1 of the supplemental material, and Figure 5 shows the
results of the simulation described in Section 4.4 of the manuscript. Results are consistent
across all simulation settings and p. As λ1 gets extremely large the algorithm slows down,
this is due to the diagonal penalization. For larger values of λ2 we see an increase in time
as well. This is due to the restriction in similarity. For extremely large values of λ1 we see a
decrease again in speed due to the completely sparse estimates. We note that using different
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Figure 1: Results for the simulation setting described in Section 3.1 in the Supplement (a,b)
consider p = 20, (c,d) consider p = 50, and (e,f) consider when p = 100. Each line represents
the average of 50 replications of the denoted method when λ2 is fixed, and λ1 varies.
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initialization can lead to different speed increases. For instance initialization at an elastic
net estimate instead of a ridge estimate can lead to different number of iterations, which will
effect speed. In each of these cases converges of our iterative algorithm was reached within
3-5 iterations.

3.3 PCEN Simulation Cluster Detection

This section we present the results on cluster detection from the simulations shown in Section
4 of the manuscript. Figure 6 presents the proportion of the 50 replications that the correct
clustering was detected for each p for the correct Q. In the case of panels (a)-(c) this
corresponds to Q = 2 and for panel (d) this corresponds to Q = 3. All methods use λ2 = 103

which corresponded to the lowest forbenious norm error in each simulation for varying λ1.
The results are consistent across the simulations, for p = 20 and 50 the methods are able to
detect the correct clustering for the smaller values of λ1 this corresponds to the more dense
estimates of Ω̂ that we see in the results presented in Section 4. As the estimates become
more sparse, the methods are unable to detect the correct clustering. For each setting when
p = 100 we see a drop off in detection ability for dense estimates of Ω̂, while increasing
to perfect detection at certain values of λ1 these values correspond to lower estimates of
forbenious norm error seen in Section 4. We see a much larger drop off in panel (d) which
corresponds to Q = 3, C = 6. Again we see for extreme levels of sparsity the clustering is
missed.

3.4 QDA under clustered, dense, and ill-conditioned precision ma-
trices

In this section, we present additional simulation results For 100 independent replications, we
generate Z1, Z2 ∈ R100×p where each row is an independent realization from Np(0, Ip). We
then obtain V1 and V2, the right singular vectors of Z1, Z2 respectively. Separately, define
the function

D(g1, g2, j) = g1
p− j + 1

p
I{1 ≤ j ≤ 6}+g2

p− j + 1

p
I{7 ≤ j ≤ 11}+p− j + 1

p
I{12 ≤ j ≤ p}.

Finally, we set Σ∗1 = V T
1 H1V1,Σ∗2 = V T

1 H2V1,Σ∗3 = V T
2 H1V2, and Σ∗4 = V T

2 H2V2,
where H1 and H2 are diagonal matrix with the jth elements equal to D(1000, 100, j) and
D(1000− ε, 100− ε, j) respectively. By constructing precision matrices in this way, each Ω∗c
is dense and relatively ill-conditioned.

We set all elements of µ∗1 = 15 log(p)/p, µ∗2 = 7.5 log(p)/p, µ∗3 = 0, and µ∗4 =
−7.5 log(p)/p. We investigate the settings (p, ε) ∈ {20, 50} × {1.0}. We also tried ε ∈
{0.05, 5.0, 9.0}, but results were effectively the same. Similar data generating models were
used by Price et al. (2015).

Under this data generating model we expect CRF to perform well in detecting the clus-
tered structures, while a method such as RDA could also perform well since the resulting
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Figure 2: Results for the simulation setting described in Section 4.2 in the manusript (a)
considers p = 20, (b) considers p = 50, and (c) considers when p = 100. Each line represents
the average seconds of convergence of 50 replications of the denoted method when λ2 is fixed,
and λ1 varies.
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Figure 3: Results for the simulation setting described in Section 4.3 in the manusript (a)
considers p = 20, (b) considers p = 50, and (c) considers when p = 100. Each line represents
the average seconds of convergence of 50 replications of the denoted method when λ2 is fixed,
and λ1 varies.
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Figure 4: Results for the simulation setting described in Section 3.1 in the supplemental
material (a) considers p = 20, (b) considers p = 50, and (c) considers when p = 100. Each
line represents the average seconds of convergence of 50 replications of the denoted method
when λ2 is fixed, and λ1 varies.
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Figure 5: Results for the simulation setting described in Section 4.4 in the manusript (a)
considers p = 20, (b) considers p = 50, and (c) considers when p = 100. Each line represents
the average seconds of convergence of 50 replications of the denoted method when λ2 is fixed,
and λ1 varies.
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(a) Results from Section 4.2
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(b) Results from Section 4.3
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(c) Results from Section 3.1 in Supplement
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(d) Results from Section 4.4

Figure 6: Results of cluster detection for the graphical model simulations related for PCEN.
These results are for λ2 = 103 for the optimal Q in each simulation.16



Table 1: Results of simulation described in Section 3.4 comparing classification error rates
and standard errors of CRF, RDA, RF and the two oracle methods for (p, ε) ∈ {20, 50} ×
{1.0}.

RF CRF RDA Oracle TC

p = 20
0.204 0.022 0.010 0.004 0.006

(0.008) (0.003) (0.002) (0.000) (0.003)

p = 50
0.185 0.002 0.007 0.000 0.000

(0.004) (0.000) (0.001) (0.000) (0.000)

precision matrices are dense.
Table 1 presents a comparison of classification error rates of CRF, RDA, RF and Oracle

methods for each p and ε. We see the RDA and CRF are competitive for each p and ε, while
RF has a higher classification error rate in each setting. The results also suggest that as p
increases, the variability in classification error rate for CRF, RDA, and the Oracle method
decreases. In the p = 20 case CRF is able to select the true clusters 12% of the time while
for the p = 50 case CRF is able to recover the true clusters 100% of the time.

3.5 Effect of sample size on PCEN

In this simulation we investigate the behavior of PCEN-2 using the same data generating
model described in Section 4.2 with n ∈ {50, 200}, p ∈ {20, 50}, and λ2 ∈ {10−6, 10−5, . . . , 105, 106}.
Each combination is replicated 10 times. The results are presented in Figures 7 and 8, where
we display the log-sum of the Forbenious norm squared error and the true positive rate
(TPR) compared to the number of non-zero elements selected in all precision matrices for
all combinations of n and p. Each line in Figures 7 and represents PCEN-2 with λ2 fixed
and λ1 varying.

For the considered values of p, we see that as the sample size increases, both estimation
and graph recovery improve for all values of λ2 These results show the effect λ2 has on the
estimation and graph recovery in this setting: namely, large values of the tuning parameter
λ2 led to lowest Frobenius squared norm estimation error, but for models which had slightly
higher numbers of nonzero entries.

3.6 Additional Results from Gaussian Graphical Model Simula-
tions

Figures 9, 10, 11 present the results from the simulations described in Sections 4.2, 4.3, and
4.4 respectively, when p = 20 and p = 50. In each case the results show a similar pattern to
the results presented in the manuscript.

17



2

4

6

0.25 0.50 0.75 1.00

lo
g(

∑ c=
14
||Ω̂

c
−

Ω
*c

|| F2
)

n=50

2

4

6

0.25 0.50 0.75 1.00

n=200

0.2

0.4

0.6

0.8

1.0

0.25 0.50 0.75 1.00
Proportion of non−zero elements

Tr
ue

 p
os

iti
ve

 r
at

e

0.2

0.4

0.6

0.8

1.0

0.25 0.50 0.75 1.00
Proportion of Non−Zero Elements

Figure 7: Results for the simulation setting described in Section 3.5 when p = 20. Each line
represents the average of 10 replications of PCEN when Q = 2, λ2 is fixed, and λ1 varies.
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Figure 8: Results for the simulation setting described in Section 3.5 when p = 50. Each line
represents the average of 10 replications of PCEN when Q = 2, λ2 is fixed, and λ1 varies.
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Table 2: A comparison of network differences produced by Joint Graphical Lasso for the
Pulmonary Hypertension Patients Data. The values in the table are the number of edges
that are present only in IPAH, SPAH, or are present in both.

IPAH SS w/o PH IPAH and SS w/o PH All Groups Total
Graphical Lasso 1453 22 5 1110 2037

3.7 Access to Code and Data

The code used to produce the simulations and data analysis examples can be found in a public
github repository at https://github.com/bprice2652/cluster_fusion_precision.

4 Gene Expression from Pulmonary Hypertension Pa-

tients

Figure 12 presents the corresponding network structure found using PCEN with Q=2 under
the setting described in Section 6.1 in the manuscript. Figure 13 and 14 correspond to the
network structures found using the cooporative lasso and graphical lasso respectively.

5 Complete Algorithms

The complete algorithms for CRF and PCEN can be found in Algorithm 1 and Algorithm
2 respectively. We note our implementation of PCEN described in Algorithm 2 uses back-
tracking.
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Algorithm 1: Blockwise coordinate descent for CRF

Given Q ∈ Z+, λ1 > 0, λ2 ≥ 0, ε > 0, and initializer Ω̃
0
, set t = 1.

1. (D̃t
1, . . . , D̃

t
Q) = arg minD1,...DQ

{∑Q
q=1

1
card(Dq)

∑
c,m∈Dq ‖Ω̃

t−1
c − Ω̃t−1

m ‖2
F

}
2. For all q ∈ {1, . . . , Q} # apply ridge fusion algorithm to each cluster

a. λ̄2 = 2λ2
card(D̃tq)

b. Repeat for all m ∈ Dq until
∑

m∈Dq ‖Ω̃
†
m − Ω̃t−1

m ‖1 < ε

i. Ω̃†m = Ω̃t−1
m

ii. Eigendecompose UΓU ′ = Sm − λ̄2
nm

∑
l∈D̃tq\{m}

Ω̃t−1
l

iii. λ̃m =
λ1+λ̄2(card(D̃tq)−1)

nm

iv. Ω̃t−1
m = 1

2λ̃m
U{−Γ + (Γ2 + 4λ̃mIp)

1/2}U ′

c. For all m ∈ Dq, Ω̃t
m = Ω̃t

m

3. If (D̃t
1, . . . , D̃

t
Q) equals (D̃t−1

1 , . . . , D̃t−1
Q ), terminate. Else, set t = t+ 1 and return

to 1.

Algorithm 2: Blockwise coordinate descent for PCEN

Given Q ∈ Z+, λ1 > 0, λ2 ≥ 0, ε > 0, and initializer Ω̃
0
, set t = 1.

1. (D̃t
1, . . . , D̃

t
Q) = arg minD1,...DQ

{∑Q
q=1

1
card(Dq)

∑
c,m∈Dq ‖Ω̃

t−1
c − Ω̃t−1

m ‖2
F

}
2. For all q ∈ {1, . . . , Q} # blockwise coordinate descent for each cluster

a. Repeat for all m ∈ Dq until
∑

m∈Dq ‖Ω̃
†
m − Ω̃t−1

m ‖1 < ε

i. Ω̃†m = Ω̃t−1
m

ii. γ̄1 = λ1
nm

iii. γ̄2 =
λ2{card(D̃tq)−1}
nmcard(D̃tq)

iii. S̃m = Sm − λ2
nmcard(D̃tq)

∑
c∈D̃tq\{m}

Ω̃t−1
c

iv. Repeat until objective function value from (12) converges # GEN-ISTA

· Ω̄m = Ω̃t−1
m

· Select step size α > 0 by backtracking line search

· Ω̃t−1
m = S

(
Ω̄m − α

{
S̃m − Ω̄−1

m + 2γ̄2Ω̄m

}
, αγ̄1

)
b. For all m ∈ Dq, Ω̃t

m = Ω̃t
m

3. If (D̃t
1, . . . , D̃

t
Q) equals (D̃t−1

1 , . . . , D̃t−1
Q ), terminate. Else, set t = t+ 1 and return

to 1.
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Figure 9: Results for the simulation setting described in Section 4.2. Panels (a,b) present
results for the case when p = 20, and (c,d) presents the results for when p = 50. Each line
represents the average of 50 replications of the denoted method when λ2 is fixed, and λ1

varies.
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Figure 10: Results for the simulation setting described in Section 4.3. Panels (a,b) present
results for the case when p = 20, and (c,d) presents the results for when p = 50. Each line
represents the average of 50 replications of the denoted method when λ2 is fixed, and λ1

varies.
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Figure 11: Results for the simulation setting described in Section 4.4. Panels (a,b) present
results for the case when p = 20, and (c,d) presents the results for when p = 50. Each line
represents the average of 50 replications of the denoted method when λ2 is fixed, and λ1

varies.
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Pulmonary Hypertension Data with 2 Clusters

IPAH Only
SPAH Only
SPAH and IPAH
All Groups

Figure 12: Resulting network comparison from PCEN applied to the Pulmonary Hyperten-
sion Patients Data using Q = 2 clusters.
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Pulmonary Hypertension Data with Cooporative Lasso

IPAH Only
SPAH Only
SPAH and IPAH
All Groups

Figure 13: Resulting network comparison Cooporative Lasso applied to the Pulmonary Hy-
pertension Patients Data using largest network fit.
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Pulmonary Hypertension Data with Graphical Lasso

IPAH Only
SS w/o PH Only
IPAH and SS w/o PH
All Groups

Figure 14: Resulting network comparison from Glasso applied to the Pulmonary Hyperten-
sion Patients Data using AIC to select tuning parameters.
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