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1 MEMBRANE MESH INITIATION
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Figure S1. Schematic depiction of the mesh initiation (see Sec. 2.1.1) and resting shape of the modeled
dendritic spine. Initially, a circle with radius rs is drawn (in blue), then the y-coordinate of the vertices
(x, y) with y ≥ hPSD or y ≤ hneck changes to y = hPSD or y = hneck, respectively, resulting in a flat
circle (in black). Finally, the spine settles to a resting shape (in cyan) when only membrane forces are
considered in the simulation.

2 ESTIMATING THE CONCENTRATION OF AVAILABLE ACTIN

Here we derive the steady state concentration of available profilin-ATP-actin a in the spine, that regulates
the speed of polymerization, following the model of Bennett et al. (2011) in which the molecular complexes
and reactions involved in the recycling of actin are given by

da

dt
= k2p− Jp,

dp

dt
= −k2p+ k1s− k−1p,

ds

dt
= −k1s+ k−1p+ Jd, (S1)

where k2 is the PAD→ PAT reaction rate, k1 is the PAD→ CAD reaction rate and k−1 is the CAD→
PAD reaction rate. Jd is the depolymerization rate and Jp is the polymerization rate. Note that the drift
and diffusion of molecules are not modeled explicitly. In the following, all reactions are assumed to be
in a steady state such that Jp = Jd = J . Furthermore, an increase in profilin leads to an increase in
polymerization, hence, J = ja. Therefore, at its equilibrium

a([P ]) =
G

1 + j
k2

+ j
k1([P ])

(
1 + k−1([P ])

k2

) . (S2)

1



Supplementary Material

In Bennett et al. (2011), the values of k1 and k−1 are obtained by assuming that ADP-actin in the
association/dissociation reactions of PAD and CAD rapidly approaches its equilibrium, thus

k1([P ]) =
kPD+ [P ]kC−

kC+[S] + kPD+ [P ]
, k−1([P ]) =

kC+[S]kPD−
kC+[S] + kPD+ [P ]

. (S3)

For more details see (Bennett et al., 2011), values of rates kPD+ , kPD− , kC+ , kC− and cofilin concentration [S]
are given in Table S1. The value of the fraction of free profilin is given by [P ] = ϕPtot, where ϕ evolves
according to

dϕ

dt
= q1 − q2ϕ, (S4)

with q1 and q2 constant. At its steady state ϕ = q1/q2, and hence, [P ] = q1Ptot/q2 in Eq. S2. Note however,
that the above equations can be used to include LTP by regulating q1 and q2 (see Bennett et al. (2011) for
details).

Symbol Definition Value Source
k2 (s−1) PAD→ PAT reaction rate 20 Bennett et al. (2011)
j (s−1) proportionallity constant 5 fitted to match the results in Bennett et al. (2011)

kPD+ (µM−1s−1) PAD association rate 15 Bennett et al. (2011)
kPD− (s−1) PAD dissociation rate 10 Bennett et al. (2011)

kC+ (µM−1s−1) CAD association rate 150 Bennett et al. (2011)
kC− (s−1) CAD dissociation rate 20 Bennett et al. (2011)
[S] (µM) Total free cofilin 300 Bennett et al. (2011)
G (µM) concentration of total G-actin 250 Bennett et al. (2011)
Ptot (µM) Total profilin 500 Bennett et al. (2011)
q1 (s−1) ROCK dissosiation rate, see Eq. (S4) 1.1667×10−4 Bennett et al. (2011)
q2 (s−1) see Eq. (S4) 0.0033 Bennett et al. (2011)

Table S1. Parameters used to derive avalable actin

3 CALCULATING 2D MEMBRANE FORCES

Following Doubrovinski and Kruse (2011), to calculate the forces acting on the vertices of the polygon
approximating the spine head membrane Γ, the free energy associated with Γ

Emem = PΩ + τS + 2κ

∫
Γ
(H2)d$ (S5)

is considered. Here, P is the difference between the internal and external pressure, Ω the enclosed area,
τ the line tension, S the boundary length, κ the bending modulus, H the mean curvature, and $ the arc
length of the membrane.

3.1 Area

In 2D, the spine shape can be viewed as a polygonal curve given by n two dimensional vertex with
positions {x1,x2, . . . ,xn} = {(x1

1, x
1
2), (x2

1, x
2
2), ..., (xn1 , x

n
2 )}. The spine shape is circular, so the ith

vertex at position xi has neighbours at xi−1 and xi+1, and the last vertex is connected to the first (hence
if i = n then xi−1 = xn−1 and xi+1 = x1, and so on). The area Ω in (S5) can be calculated using the

2



Supplementary Material

Gauss-determinant:

Ω =
1

2

(
. . .+

∣∣∣∣xi1 xi+1
1

xi2 xi+1
2

∣∣∣∣+

∣∣∣∣xi+1
1 xi+2

1

xi+1
2 xi+2

2

∣∣∣∣+ . . .

)
, (S6)

thus,

Ω =
1

2

n∑
i=1

xi1x
i+1
2 − xi2xi+1

1 . (S7)

3.2 Boundary length

The boundary length S is given by

S =
n∑
i=1

zi (S8)

where zi, the length of the boundary element corresponding to the vertex i, is defined as

zi =
vi + vi+1

2
, i = 1, 2, . . . , n (S9)

with

vi =‖ xi − xi−1 ‖=
√(

xi1 − x
i−1
1

)2
+
(
xi2 − x

i−1
2

)2
. (S10)

3.3 Mean curvature

The curvature is given by

H =

∥∥∥∥dT

d$

∥∥∥∥ (S11)

where dT is the derivative of the unitary tangent vector T with respect to the arc length $. Assuming that
the vertices are close enough, T can be defined as

Ti =

(
xi1 − x

i−1
1

vi
,
xi2 − x

i−1
2

vi

)
, (S12)

with vi as in Eq. S10. Then, using forward finite differences,

dTi

d$i
=

1

zi

(
xi+1

1 − xi1
vi+1

−
xi1 − x

i−1
1

vi
,
xi+1

2 − xi2
vi+1

−
xi2 − x

i−1
2

vi

)
, (S13)

and therefore

(Hi)2 =
1

(zi)2

(xi+1
1 − xi1
vi+1

−
xi1 − x

i−1
1

vi

)2

+

(
xi+1

2 − xi2
vi+1

−
xi2 − x

i−1
2

vi

)2
 =:

gi

(zi)2
. (S14)
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3.4 Membrane-force

In the 2D case, (S5) can be rewritten as

Fimem = −P ∂Ω

∂xi
− τ ∂S

∂xi
− 2κ

∫
Γ

∂H2

∂xi
d$, (S15)

where
∂Ω

∂xi1
=

1

2

(
xi+1

2 − xi−1
2

)
,

∂Ω

∂xi2
=

1

2

(
−xi+1

1 + xi−1
1

)
, (S16)

and

∂S

∂xi1,2
=

∂

∂xi1,2

(
zi−1 + zi + zi+1

)
=

∂

∂xi1,2

(
vi−1 + vi

2
+
vi + vi+1

2
+
vi+1 + vi+2

2

)

=
xi1,2 − x

i−1
1,2

vi
+
xi1,2 − x

i+1
1,2

vi+1
.

Here xi1,2 means that the equation hold for both the first or second coordinate position.

For the curvature term, Doubrovinski and Kruse (2011) assumed d$ ' z, hence∫
Γ

∂H2

∂xi
d$ ' ∂

∂xi1,2

∑
j

1

zj
gj =

∑
j

1

zj
∂gj

∂xi1,2
− gj

(zj)2

∂zj

∂xi1,2

=
1

zi−1

∂gi−1

∂xi1,2
− gi−1

(zi−1)2

∂zi−1

∂xi1,2
+

1

zi
∂gi

∂xi1,2
− gi

(zi)2

∂zi

∂xi1,2
+

1

zi+1

∂gi+1

∂xi1,2
− gi+1

(zi+1)2

∂zi+1

∂xi1,2
,

where

∂zi−1

∂xi1,2
=

1

2

(
xi1,2 − x

i−1
1,2

vi

)
,

∂zi

∂xi1,2
=

1

2

(
xi1,2 − x

i−1
1,2

vi
−
xi+1

1,2 − xi1,2
vi+1

)
,

∂zi+1

∂xi1,2
= −1

2

(
xi+1

1,2 − xi1,2
vi+1

)
,
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and

∂gi−1

∂xi1
= 2

(
xi1 − x

i−1
1

vi
−
xi−1

1 − xi−2
1

vi−1

)(
1

vi
−
(
xi1 − x

i−1
1

)2
(vi)3

)

+ 2

(
xi2 − x

i−1
2

vi
−
xi−1

2 − xi−2
2

vi−1

)(
−
(
xi2 − x

i−1
2

) (
xi1 − x

i−1
1

)
(vi)3

)
,

∂gi+1

∂xi1
= 2

(
xi+2

1 − xi+1
1

vi+2
−
xi+1

1 − xi1
vi+1

)(
1

vi+1
−
(
xi+1

1 − xi1
)2

(vi+1)3

)

+ 2

(
xi+2

2 − xi+1
2

vi+2
−
xi+1

2 − xi2
vi+1

)(
−
(
xi+1

2 − xi2
) (
xi+1

1 − xi1
)

(vi+1)3

)
,

∂gi

∂xi1
= 2

(
xi+1

1 − xi1
vi+1

−
xi1 − x

i−1
1

vi

)(
− 1

vi+1
+

(
xi+1

1 − xi1
)2

(vi+1)3
− 1

vi
+

(
xi1 − x

i−1
1

)2
(vi)3

)

+ 2

(
xi+1

2 − xi2
vi+1

−
xi2 − x

i−1
2

vi

)((
xi+1

2 − xi2
) (
xi+1

1 − xi1
)

(vi+1)3
+

(
xi2 − x

i−1
2

) (
xi1 − x

i−1
1

)
(vi)3

)

(for the derivatives with respect to xj2 the subscript indices 1 and 2 are swapped). Note that all term involved
in the force calculation at xi only include the coordinates of its neighbors xi−1, xi+1 and xi+2.

4 CALCULATING 3D MEMBRANE FORCES

The Helfrich free energy (Guckenberger et al., 2016) is given by

Emem = P

∮
dV + τ

∮
dA+

κ

2

∮
dA(2H2), (S17)

where P is the difference between the internal and external pressure, τ the surface tension, and κ the
bending modulus. Here V , A and H represent volume, surface area and mean curvature, respectively.

In the 3D model, the discretized spine head membrane is a mesh containing nv vertices xi =(
xi1, x

i
2, x

i
3

)
∈ R3, i = 1, 2, . . . , nv. The mesh is formed by a set of nt triangles. The relation betw-

een vertices and triangles is given by a triangulation matrix T ∈ Rnt×3, which contains the index of the
vertices forming a triangle I in every row. For the calculations, we assume that a triangle is formed by the
vertices at positions xi, xj and xj−1 (see Fig. S2) and its corresponding entry in the triangulation matrix
is T (I) = (i, j − 1, j). Note that a triangulation can contain more than one triangle with first entry in
the triangulation matrix corresponding to vertex at position xi but forming different triangles (different
values in the second and third position of the triangulation matrix). Hereinafter, calculations of volume and
surface area are based on the mesh triangulation whilst calculations of the curvature are based on the set of
vertices.
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4.1 Volume

Following Krüger (2012), the first terms in the right-hand-side of (S17) can be rewritten as

P

∮
dV ≈ P

nt∑
I=1

V I , V I =
1

6

(
xj−1 × xj

)
· xi, (S18)

where × represents the cross product and · the scalar product.

4.2 Surface area

Similarly, Krüger (2012) rewrites the second term as

τ

∮
dA ≈ τ

nt∑
I=1

AI , AI =
1

2

∣∣Ni
∣∣ , (S19)

where Ni is the outer normal vector of the membrane surface at position xi given by

Ni =
(
xj−1 − xi

)
×
(
xj − xi

)
, (S20)

and |x| =
√
x2

1 + x2
2 + x2

3 is the euclidean norm.

4.3 Mean curvature

For the curvature term in (S17) we approximate the integral by summing over the vertices instead of
triangles and use the following expression for H (Xu, 2004; Guckenberger et al., 2016; Gompper and Kroll,
1996; Guckenberger and Gekle, 2017):

H =
nv∑
i=1

Hi, Hi = H(xi) =
1

2
4sx

i · ni, ni =
Ni

|Ni|
, (S21)

where4s denotes the Laplace-Beltrami operator which can be approximated (Gompper and Kroll, 1996)
as

4s x
i
l ≈

∑
j(i)(cot θij1 + cot θij2 )(xil − x

j
l )

2AiV
, i = 1, 2, . . . nv, l = 1, 2, 3, (S22)

where the sum runs over the neighbours j(i) of xi. Ideally, the vertex at position xi has 6 neighbours
at positions xjs, where xj−1 (xj+1) denotes the next neighboring1 vertex of xi to the left (right) side of
xj . AiV is the Voronoi area corresponding to vertex xi and θij1 and θij2 are the angles opposite to the edge
between xi and xj and in the triangles containing xj−1 and xj+1, respectively (see Figure S2). Their

1 This notation is independent of the triangulation.
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cotangents are given by

cot θij1 =
cos θij1√

1− cos2 θij1

, cos θij1 =

(
xi − xj−1

)
·
(
xj − xj−1

)
li,j−1lj,j−1

, (S23)

cot θij2 =
cos θij2√

1− cos2 θij2

, cos θij2 =

(
xi − xj+1

)
·
(
xj − xj+1

)
li,j+1lj,j+1

, (S24)

with li,j =
∣∣xi − xj

∣∣ . (S25)

The Voronoi area AiV corresponding to node xi is defined by

AiV =
1

8

∑
j(i)

(cot θij1 + cot θij2 )
∣∣xi − xj

∣∣2 , i = 1, . . . , nv. (S26)

Hence, the last right-hand-side term in (S17) can be rewritten as

κ

2

∮
(2H2)dA ≈ κ

2

∑
i

(2Hi)2AiV = 2κ
∑
i

Hib withHib = (Hi)2AiV . (S27)

4.4 Membrane force

The force Fimem on vertex i located at xi of the polyhedron approximating the spine head membrane is
given by

Fimem = −∂E
i
mem

∂xi
= −

(
∂E imem
∂xi1

,
∂E imem
∂xi2

,
∂E imem
∂xi3

)
. (S28)

As stated above the volume and surface area terms are calculated using the triangulation T . Therefore, for
the first term of Emem in Eq. (S17),

∂

∂xi

∮
dV ≈ ∂

∂xi

∑
I

V I , (S29)

only triangles containing xi are taken into account. If xi is on the first column of T , then its contribution is
(xj−1 × xj)/6, on the second column (xj × xi)/6, and on the third column (xi × xj−1)/6. Because one
vertex form part of different triangles, these contributions are summed accordingly.

Similarly, for the derivative of the second term of Emem in Eq. (S17) only the triangles containing xi

contribute to the force at that point. The contribution depends on the position within the triangulation
matrix T . Assuming that the vertex xi is in the first column of the triangulation matrix, then it contributes(
ni × (xj − xj−1)

)
/2 because the derivative of the surface area at xik is given by

∂AI

∂xik
=

1

2
ni · ∂N

i

∂xik
,

∂Ni

∂xik
= (xj − xj−1)× êk, k = 1, 2, 3, (S30)
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where êk is the kth unit vector. Likewise, if xi is on the second column of the triangulation matrix, then
its contribution is

(
ni × (xi − xj)

)
/2, and on the third

(
ni × (xj−1 − xi)

)
/2. Contributions of different

triangles containing xi are summed.

Finally, for the derivative of the third term in Eq. (S17) note thatHib in Eq. (S27) is a function of xi and
its neighbours. Hence, a vertex k have position xi when calculatingHib, position xj when calculatingHjb ,
and so on. In the following, we derive the contribution to the derivativeHib for all the points involved in its
calculation, thus

∂Hib
∂xm

= 2Hi ∂H
i

∂xm
AiV + (Hi)2∂A

i
V

∂xm
, m ∈ {i, j, j − 1, j + 1}, (S31)

where
∂Hi

∂xm
=

1

2

(
∂4sx

i

∂xm
· ni +4sx

i · ∂n
i

∂xm

)
, (S32)

with

∂ 4s x
i
l

∂xmk
=

1

2

∑
j(i)

(
∂ cot θij1
∂xmk

+
∂ cot θij2
∂xmk

)(
xil − x

j
l

)
AiV

+

(
cot θij1 + cot θij2

) ∂
(
xil−x

j
l

)
∂xmk

AiV

−

(
cot θij1 + cot θij2

)(
xil − x

j
l

)
∂Ai

V
∂xmk(

AiV
)2 . (S33)

In general,
∂ cot θ

∂xm
=

1

(1− cos2 θ)
3/2

∂ cos θ

∂xm
. (S34)

Here,

∂ cos θij1
∂xi

=
xj − xj−1

li,j−1lj,j−1
−

cos θij1
(
xi − xj−1

)
l2i,j−1

,
∂ cos θij2
∂xi

=
xj − xj+1

li,j+1lj,j+1
−

cos θij2
(
xi − xj+1

)
l2i,j+1

,

∂ cos θij1
∂xj−1

=
2xj−1 − xj − xi

li,j−1lj,j−1
+ cos θij1

(
xi − xj−1

l2i,j−1

+
xj − xj−1

l2j,j−1

)
,

∂ cos θij2
∂xj−1

= 0,

∂ cos θij1
∂xj

=
xi − xj−1

li,j−1lj,j−1
−

cos θij1
(
xj − xj−1

)
l2j,j−1

,
∂ cos θij2
∂xj

=
xi − xj+1

li,j+1lj,j+1
−

cos θij2
(
xj − xj+1

)
l2j,j+1

,

∂ cos θij1
∂xj+1

= 0,
∂ cos θij2
∂xj+1

=
2xj+1 − xj − xi

li,j+1lj,j+1
+ cos θij2

(
xi − xj+1

l2i,j+1

+
xj − xj+1

l2j,j+1

)
.

Now,

∂AiV
∂xm

=
1

8

∑
j(i)

((
∂ cot θij1
∂xm

+
∂ cot θij2
∂xm

)
l2i,j +

(
cot θij1 + cot θij2

) ∂l2i,j
∂xm

)
, m ∈ {i, j, j − 1, j + 1},

(S35)
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I

xi

xj

xj+1

xj-1

ij
1

ij
2

Figure S2. Neighbors of node xi. Here vertices xi, xj and xj−1 form the triangle I (in red). Gray region:
Voronoi Area AiV

where
∂l2i,j
∂xi

= 2
(
xi − xj

)
,

∂l2i,j
∂xj

= −2
(
xi − xj

)
,

∂l2i,j
∂xj−1

=
∂l2i,j
∂xj+1

= 0. (S36)

The derivative of the normalized normal vector is given by

∂ni

∂xm
=

1

|Ni|

(
∂Ni

∂xm
− ni

(
ni · ∂N

i

∂xm

))
, m ∈ {i, j − 1, j, j + 1} (S37)

hence

4sx
i · ∂n

i

∂xm
=

1

|Ni|

(
4sx

i −
(
4sx

i · ni
)
ni
)
· ∂N

i

∂xm
. (S38)

The expressions for each m ∈ {i, j − 1, j, j + 1} are

4sx
i · ∂n

i

∂xi
=

1

|Ni|

(
4sx

i −
(
4sx

i · ni
)
ni
)
×
(
xj − xj−1

)
, (S39)

4sx
i · ∂n

i

∂xj
=

1

|Ni|

(
4sx

i −
(
4sx

i · ni
)
ni
)
×
(
xj−1 − xi

)
, (S40)

4sx
i · ∂ni

∂xj−1
=

1

|Ni|

(
4sx

i −
(
4sx

i · ni
)
ni
)
×
(
xi − xj

)
. (S41)

Note that a vertex have many contributions depending on the role it takes in the curvature calculation
(main vertex i or neighbouring vertex j,j − 1,j + 1), thus we sum these contributions.
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