A Self-Assembled Iron(II) Metallacage as a Trap for Per- and Poly-fluoroalkyl Substances in Water

Cressa Ria P. Fulong, Mary Grace E. Guardian, Diana S. Aga*, Timothy R. Cook*

Department of Chemistry, University at Buffalo, The State University of New York,

Buffalo, New York 14260, United States

Email: dianaaga@buffalo.edu, trcook@buffalo.edu

Supporting Information

Table of Contents

I. FeMOP Synthesis	<i>S2</i>
II. FeMOP Solubility	S3
III. Per- and polyfluoroalkyl Substances Chemical Structure	S4
IV. LC/MS/MS Method for the analysis of 20 PFAS	S5
V. ¹⁹ F NMR titration spectra and Binding Models	56
VI. ¹⁹ F NMR spectra for Job plot	59

VII. ¹⁹ F Variable Temperature (VT) NMR spectra	S10
VIII. ¹ H and ¹⁹ F DOSY NMR spectra	S11
References	S14

I. FeMOP Synthesis

FeMOP¹ was self-assembled in gram-scale using the following procedure. 5.000 g (10.15 mmol) 4,4'-diaminobiphenyl-2,2'-disulfonic acid, 2.170 g (20.30 mmol) 2formylpyridine, 3.685 g (20.33 mmol) tetramethylammonium hydroxide pentahydrate, and 1.880 g (6.750 mmol) iron(II) sulfate heptahydrate were added to a 500 mL Schlenk flask and evacuated for 15 min. Then, 125 mL degassed deionized H₂O was added to the flask. The mixture was stirred under N₂ for 20 h at 50 °C. The mixture was then filtered and the product was precipitated by adding 250 mL acetone. After recrystallization in 500 mL 1:2 (H₂O:acetone mixture), 5.65 g of pure product was isolated at quantitative yield. The FT-IR spectrum for the synthesized powder is shown in Figure 6. The ¹H NMR spectrum is shown in Figure 2. ¹H NMR (400 MHz, D₂O, 25 °C): δ (ppm) = 9.34 (s, 12H, imine), 8.71 (d, 12H, ³J = 7.9 Hz, 3-pyridine), 8.40 (t, 12H, ³J = 8.1 Hz, 4-pyridine), 7.77 (t, 12H, 5pyridine), 7.54 (d, 12H, ³J = 5.5 Hz, 6-pyridine), 7.14 (d, 12H, ³J = 8.4 Hz, 6,6'-benzidine),

6.44 (s, 12H, 3,3'-benzidine), 5.84 (d, 12H, ³J = 3.6 Hz, 5,5'-benzidine), 7.14 (s, [NMe₄]⁺).
FT-IR (ATR, cm–1): 3407 (w), 1640 (w), 1608 (w), 1582 (w), 1553 (w), 1491 (w), 1471 (w), 1431 (w), 1397 (w), 1356 (w), 1302 (w), 1225 (w), 1184 (w), 1140 (w), 1091 (w), 1080 (w), 1041 (w), 1025 (w), 997 (w), 951 (w), 935 (w), 906 (w), 832 (w), 767 (w), 750 (w), 729 (w), 701 (w), 672 (w), 620 (w), 581 (w), 550 (w).

Figure S1. (a) Molar absorptivity coefficient spectra of aqueous **FeMOP** at 5, 10, 20, and 50 μ M concentrations and (b) calibration curve using absorbances of **FeMOP** at 572 nm to extrapolate the molar solubility.

Figure S2. List of per- and polyfluoroalkyl substances (PFASs) included in this work, namely. perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), (PFUDA), perfluorododecanoic perfluoroundecanoic acid acid (PFDoA), acid (PFBS), perfluoropentanesulfonic perfluorobutanesulfonic (PFPeS). acid perfluorohexanesulfonic acid (PFHxS), perfluoroheptanesulfonic acid (PFHpS), perfluorooctanesulfonic acid (PFOS), perfluorononanesulfonic acid (PFNS), 4:2 fluorotelomer sulfonate (4:2 FTS), 6:2 fluorotelomer sulfonate (6:2 FTS), 8:2 fluorotelomer sulfonate (8:2 FTS), 2-(*N*-Methylperfluorooctanesulfonamido)acetic acid (N-MeFOSAA), and 2-(*N*-Ethylperfluorooctanesulfonamido)acetic acid (N-EtFOSAA).

IV. LC/MS/MS Method for the analysis of 20 PFAS

A method using a triple quadrupole liquid chromatography with tandem mass spectrometry system [Agilent Technologies HPLC 1200 Series with Thermo Scientific TSQ Quantum Ultra MS] operated under selected reaction monitoring (LC/MS/MS) was optimized for the simultaneous analysis of PFASs compounds. The method uses a Waters X-Bridge[™] C18 (3.5 µm particle size, 2.1 mm i.d., 150 mm length) with a mobile phase consisting of water with 5 mM ammonium acetate (mobile phase A) and acetonitrile (mobile phase B). Gradient elution was carried out at a flow rate of 200 μ L min⁻¹ starting with 5% mobile phase B, held for 1 min, followed by a 20-min linear gradient to 90% mobile phase B, held for 2 min, and then brought back to initial conditions in 1 min and equilibrated for 10 min before next injection. The sample injection volume was 10 µL. Summary of the LC/MS/MS parameters for the PFASs included in this study is shown in the table below.

Table S1. LC/MS/MS parameters for the 20 PFASs showing ions monitored [for quantitation (Quan) and for verification (qual)], retention time and instrument linear range.

No	Compound Name	Acronym	Precursor	Product lons,	Retention	Instrument Linear	Linear
110.	Compound Name	Acionym	lons	Quan/qual	Time, min	Range,	R ²
1	Perfluorobutanoic acid	PFBA	213	169/115	8.9	3-250	0.993
2	Perfluoropentanoic acid	PFPeA	263	219/187	9.5	3-250	0.997
3	Perfluorohexanoic acid	PFHxA	313	269/297	9.8	3-150	0.994
4	Perfluoroheptanoic acid	PFHpA	363	319/169	10.2	3-150	0.991
5	Perfluorooctanoic acid	PFOA	413	369/169	10.5	3-150	0.992
6	Perfluorononanoic acid	PFNA	463	419/219	10.9	3-150	0.997
7	Perfluorodecanoic acid	PFDA	513	469/269	11.3	3-150	0.995
8	Perfluoroundecanoic acid	PFUdA	563	519/269	11.9	3-150	0.999
9	Perfluorododecanoic acid	PFDoA	613	569/319	12.5	3-150	0.998
10	Perfluorobutanesulfonic acid	PFBS	299	80/99	10.1	5-150	0.992
11	Perfluoropentanesulfonic acid	PFPeS	349	80/99	10.4	5-150	0.994
12	Perfluorohexanesulfonic acid	PFHxS	399	80/99	10.8	5-150	0.996
13	Perfluoroheptanesulfonic acid	PFHpS	449	80/99	11.2	5-150	0.993
14	Perfluorooctanesulfonic acid	PFOS	499	80/99	11.7	5-150	0.999
15	Perfluorononanesulfonic acid	PFNS	549	80/99	12.1	5-150	0.999
	2-(<i>N</i> -	N					
16	Methylperfluorooctanesulfonamido)acetic		570	419/483	11.3	5-250	0.992
	acid	WEF USAA					
	2-(<i>N</i> -	N					
17	Ethylperfluorooctanesulfonamido)acetic		584	419/526	11.5	5-250	0.999
	acid	EIFUSAA					
18	Fluorotelomer sulfonic acid 4:2	4:2 FTS	327	307/80	9.7	5-250	0.994
19	Fluorotelomer sulfonic acid 6:2	6:2 FTS	427	407/80	10.3	3-250	0.995
20	Fluorotelomer sulfonic acid 8:2	8:2 FTS	527	507/80	11.1	3-250	0.992

V. ¹⁹F NMR titration spectra and Binding Models

Figure S3. ¹⁹F NMR spectra of 0.5 mL D₂O solution titration of (a) **FeMOP** and (b) FeSO₄ in 1.0 mM PFHxA referenced at -122.36 ppm using 5.00 mM NaF solution in D₂O.

Figure S4. ¹⁹F NMR spectra of 0.5 mL D₂O solution titration of (a) **FeMOP** and (b) $FeSO_4$ in 1.0 mM PFHpA referenced at –122.36 ppm using 5.00 mM NaF solution in D₂O.

FeMOP:PFHpA ratio		[PFHpA], <i>mM</i>	K _a
0	:1	1.00 ± 1 ^a	-
1:	10	0.96 ± 1ª	6 x 10 ²
1	:4	0.96 ± 1 ^a	2 x 10 ²
1	:2	0.69 ± 1 ^a	2 x 10 ³
1	:1	0.93 ± 1 ^a	8 x 10 ¹
a)	-80.5 -81.5	/ /	
b)			

Table S2. Summary of remaining PFHpA concentration in solution after addition of**FeMOP**

Figure S5. ¹⁹F NMR spectra of 0.5 mL D₂O solution titration of (a) **FeMOP** and (b) $FeSO_4$ in 1.0 mM PFNA referenced at –122.36 ppm using 5.00 mM NaF solution in D₂O.

Complex	Model	K _{a1}	K _{a2}	Sum of	Standard	Covariance
				squares	Error	of fit
	1.1	28.01 ±		0.00115		0.0032529
FeMOP:PFHx	1.1	63% ^a	-	6	0.006107	37
А	1:2			0.00110		0.0030943
		26.43 ^{<i>b</i>}	–14.17 ^c	1	0.006508	82
	1.1			0.00104		0.0033382
FeMOP:PFHp	1.1	37.52 ^b	-	5	0.005805	04
А	1:2	28.87 ±		0.00102		0.0032571
		50% ^a	31.24 ^{<i>b</i>}	0	0.006262	88
	1.1			0.00305		0.0878690
	1.1	606.25 ^b	-	6	0.012683	86

Table S3. Summary of fit parameters for the titration binding modeling of **FeMOP** and FeSO₄ association with PFHxA, PFHpA, and PFNA

VI. ¹⁹F NMR spectra for Job plot

Figure S6. ¹⁹F NMR spectra of 0.5 mL D₂O solutions of **FeMOP** and PFHxA at varying ratios and a total concentration of 5.00 mM referenced at -122.36 ppm using 10.0 mM NaF solution in D₂O for Job plot.

Figure S7. ¹⁹F NMR spectra of 0.5 mL D₂O solutions of **FeMOP** and PFHpA at varying ratios and a total concentration of 5.00 mM referenced at -122.36 ppm using 10.0 mM NaF solution in D₂O for Job plot.

VII. ¹⁹F Variable Temperature (VT) NMR spectra

Figure S8. ¹⁹F NMR spectra of 0.5 mL D₂O solution of 5.00 mM PFHpA at 5, 10, 15, 20, 25, 30, 35, 40, 45 °C then back to 25 °C for VT NMR method.

Figure S9. ¹⁹F NMR spectra of 0.5 mL D_2O solution of a 10.0 mM total concentration 1:1 (FeMOP:PFHpA) at 5, 10, 15, 20, 25, 30, 35, 40, 45 °C then back to 25 °C for VT NMR method.

Peak/R	A 4 a	A 0 <i>a</i>	v0a		D 2	т <i>и</i>	ΔН,	ΔS,
un	AI	AZ"	۸U ^a	ax" K _{adj} " I 1/2	1 _{1/2} , A	kJ mol⁻¹	J mol-1 K-1	
1/1	111 05 ± 1	00.25 ± 1	0.00332 ±	2.08 x 10 ⁻⁵ ±	0 00002	200.02	4.00×10^{2}	1 22 x 103
1/1 111.05 I	99.20 I I	0.5	52	0.90902	300.92	4.00 X 10 ²	1.55 X 10°	
2/1	16/ 18 ± 13	110 11 ± 1	0 00335 ±3	1.09 x 10 ⁻⁴ ±	0.05666	307 88	7.62×10^{1}	2.47×10^{2}
2/1 104.10	104.10 ± 13	115 110.1414	0.00323 13	61	0.95000	307.00	7.02 X 10 ⁻	2.47 X 10
3/1	111.82 ±	99.92 ±	0.00332 ±	2.00 x 10 ⁻⁵ ±	0 92401	301 12	4 15 x 10 ²	1 38 x 10 ³

Table S4. Summary of fit parameters for the VT NMR modeling of **FeMOP** associationwith PFHpA

(c) 1:3 (FeMOP:heptanoic acid), (d) 1:2 (FeMOP:heptanoic acid), (e) 1:1

(**FeMOP**:heptanoic acid), (f) 2:1 (**FeMOP**:heptanoic acid), (g) 3:1 (**FeMOP**:heptanoic acid) at 2.5 mM heptanoic acid concentration, and (h) 2.5 mM **FeMOP** in D₂O.

Figure S11. ¹H DOSY NMR spectra of (a) 1:4 (**FeMOP**:PFHpA), (b) 1:2 (**FeMOP**:PFHpA), (c) 1:1 (**FeMOP**:PFHpA), (d) 2:1 (**FeMOP**:PFHpA), (e) 3:1 (**FeMOP**:PFHpA), and (f) 4:1 (**FeMOP**:PFHpA) D₂O solutions at 1.0 mM PFHpA concentration.

Figure S12. ¹⁹F DOSY NMR spectra of (a) PFHpA, (b) 1:4 (FeMOP:PFHpA), (c) 1:2 (FeMOP:PFHpA), (d) 1:1 (FeMOP:PFHpA), (e) 2:1 (FeMOP:PFHpA), (f) 3:1

(FeMOP:PFHpA), and (g) 4:1 (FeMOP:PFHpA) D_2O solutions at 1.0 mM PFHpA concentration.

Solution	Diffusion coefficient, × 10 ⁻⁶ cm ² s ⁻¹					
[FeMOP]/[heptanoic acid]	FeMOP	Heptanoic acid	PFHpA			
0.00	0	10.5	-			
0.25	2.85	9.8	-			
0.33	2.86	9.8	-			
0.50	2.67	9.22	-			
1.00	2.86	9.73	-			
2.00	2.66	9.73	-			
3.00	2.67	9.73	-			
[FeMOP]/[PFHpA]						
0.00	Ο	_	7 97			

 Table S5. Summary of diffusion coefficients of FeMOP when complexed with heptanoic

 acid and PFHpA

References

(1) Mal, P.; Schultz, D.; Beyeh, K.; Rissanen, K.; Nitschke, J. R., An Unlockable– Relockable Iron Cage by Subcomponent Self-Assembly. *Angew. Chemie. Int. Ed.* **2008**, *47*, 8297-8301.