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A. The Continuous Hubbard-Stratonovich Transformation of an Ab Initio Hamiltonian

In this section, we provide more details regarding the manipulation of the ab initio Hamiltonian that makes it
amenable to a continuous Hubbard-Stratonovich Transformation. As described in the main text, after recasting the
two body interaction term into a density-density form, a supermatrix, V(;q ka),1s,58) may be formed and diagonalized
(or decomposed) into
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where A, is the 7-th eigenvalue, and R(;q, kqa)y 1S the (i, kar)-th element of the y-th eigenvector. The two body term
then becomes
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where the creation and annihilation operators follow the definition in the main text.
Following Zhang, it may be recognized that Z]B 15 ?lﬁ Jﬁ)v( 6015) and Zm ko (,(X,ka)v(cgacm) are simply Her-

mitian conjugates of each other. We can therefore write the two body potential operator, V, as
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It is straightforward to see that Hermiticity guarantees that
Pl = Pl (6)

It follows that Equation (3) may be re-expressed as
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pg is a one body term and can be readily combined with the original one body term K. The total Hamiltonian may
now be expressed as
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Observe that Hy is now a summation of squares of one body terms, and can be decoupled using the continuous
Hubbard-Stratonovich Transformation in the following way
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The propagator can be further split into the spin up and down contributions,
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are the up and down propagators for one site within one imaginary time step, respectively. Putting this altogether,
the total propagator for one imaginary time step for the spin sector « is
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B. Details of the Background Subtraction

To reduce the phase problem, we can further subtract (p., + ﬁL) and (py — ﬁL) from (11). In this case, the two body
term becomes
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7+ and 7)_ are one body terms, which can be combined with H, in (10). The constant term 7jy can be ignored because
it won’t affect the physical observables in the sampling process.
After simplification, the total Hamiltonian is therefore

H=> Hy+H, (22)

with

(2N)2 (2N)2

N
= Z:ria,jaé;raéja - 2p0 - Zczacza + = Z >\ ATa + 3 Z )‘ p'ya (23)
ij

and Hy is given in (18). The additional superscript « in p5 and p“l;a means we only pick out the corresponding one-
body portion with the correct spin index from the total p, and ,éIY to combine into Hi,. As described above, we can

then proceed to decouple H, using a continuous HS transform, and calculate the partition function and observables
of interest.

C. Details of Importance Sampling

Starting from (18), after applying the continuous Hubbard-Stratonovich Transformation as in (12), the two body
propagator containing the background subtraction term now becomes

(2N)?

N 2 ‘/ T T
e || (7 / / ddy_dg-re” Bt BT (oot = (0] g Lo 6y (=)= (0 —1)]
vy ooV
(24)
Introducing a force bias shift to every auxiliary field in the above equation, we obtain
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contributes to the overall weight of each walker.



D. Obtaining Mean Field Trial Density Matrices and Energies

Observables from mean field theory (MFT) are evaluated using a finite temperature mean field density matrix,
which also serves as the trial density matrix for our quantum Monte Carlo simulations. Here, we provide more
details on how mean field density matrices are obtained. We can approximate the two body portion of the ab initio

Hamiltonian by introducing a mean field density matrix, Df}7 to obtain
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where %1, PSrre and Parro are the one body and constant terms,
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The one body terms may be combined with the kinetic operator, while the constant term can be added at the end of
any total energy calculation.
Invoking the mean field approximation means that we ignore the remaining two body term § 3° | P ngl VZ‘;;? lo‘ﬂ (CT Cha—
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which can be solved easily at finite temperature to obtain its related mean field density matrix Df} This density

matrix can then be used to construct a new Hamiltonian Hy, g given by (31). To obtain the final mean field density
matrix, we therefore must iterate this procedure until we achieve convergence: first, we obtain an estimate of the
density matrix, then, we form a new Hamiltonian, then, we obtain a new estimate of the density matrix, and so on.
When this process is finished, we arrive at a self-consistent mean field solution for Dog, which we can use as a trial
density matrix for performmg background subtraction, or from which we can directly measure observables. Note that
at low temperature, the self-consistent process may be difficult to converge. We use a linear density mixing scheme
to improve the convergence.

E. Proof of the Positive Semi-Definiteness of the Ab Initio Supermatrix

Elements of an ab initio supermatrix V are defined by
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where 7; represents the spatial coordinates of the i-th electron, and ¢;, is the ia-th spin-orbital basis function.
For any vector u,
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where we have substituted (32) in the second line, and define f(7) = > (;, ra) Uka,ia) Pia (7) Pra (7).

The Coulomb interaction 1/|7 — 7| can be further written as an integral over a Gaussian kernel, which gives
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Substituting (34) into (33), and applying the Fubini-Tonelli Theorem to exchange the integration order, we obtain
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Note that the function f() defined here is physically well conditioned and is square-integrable, namely f € L?. From
the basic properties of Gaussian kernels, we know that the integral in the parentheses in (35) is non-negative,

as long as t > 0. Substituting (36) into (35), we immediately have
u’vu > 0, (37)

for any u. This definitively demonstrates that the ab initio supermatrix V is positive semi-definite.

Note that for model systems such as Hubbard model, the Coulomb interaction is usually truncated or screened to
a short range (or on-site) effective interaction, so that the transform from the Coulomb interaction to the Gaussian
integral cannot readily be performed and thus that the above proof is not directly applicable. We indeed observe the
ramifications of this fact in numerical simulations: the supermatrix of the Hubbard model is not positive semi-definite,
and both negative and positive eigenvalues can appear.

F. Tabulated Data for Figures in the Main Text

In the following, all of the data used to generate the figures in the main text are provided. It should be noted that all
of the following calculations were performed by first finding a chemical potential that corresponds to a given number
of electrons and then computing ED, AFQMC, and MFT energies. Depending upon the chemical potentials used,
this may introduce slight deviations in the energies provided as compared with theoretically exact energies obtained
within the canonical ensemble.

TABLE I. The internal energy (Hartree) of H2O in the STO-3G basis.

1/ksT] ED |AFQMC| MFEFT
0.01 |-61.657841]-61.66(4)|-61.564377
0.1 |-69.709056|-69.69(4)|-69.162930
0.2 |-71.907839|-71.90(1) |-71.516931
0.5 |-72.662457|-72.66(1)|-72.244073
1 |-73.151258|-73.11(2) |-72.566542
2 |-73.775883|-73.76(2)|-73.105678
5 |-74.544744|-74.55(2) |-74.023591
10 |-74.947094 |-74.92(2) |-74.568453
16 |-75.019015 |-74.98(3) |-74.789765
20 |-75.023360|-75.02(3) |-74.856005
25 |-75.024138|-75.02(4) |-74.900785
33.3 |-75.024235|-75.02(5) |-74.932375




TABLE II. The internal energy (Hartree) of Cy in the STO-6G basis.

-75.434537 Hartree.

TABLE III: Occupancy, N, of the nitrogen atom vs. chemical potential, u, in the STO-6G basis at different temperatures. All

1/ksT| AFQMC | MFT
0.01 |-72.0633(8)|-72.043783
0.1 |-72.271(6) |-72.103403
1| -73.46(3) |-72.700859
2 | -74.11(4) |-73.274621
5 | -74.91(7) |-74.170179
10 | -75.22(3) |-74.646035
16 | -75.36(5) |-74.839024
20 | -75.32(6) |-74.882408
25 | -75.4(1) |-74.907618
33.3 | -75.6(2) |-74.929173

temperatures and chemical potentials are in Hartree.

The exact non-relativistic, ground state energy is

w ||N at kg1 = 1.0] Error Bar [[V at kg1 = 0.1 Error Bar
-5.0 +2.775517 +0.015649 +2.00000 +0.000000
-4.9 +2.827576 +0.017226 +2.000001 +0.000000
-4.8 +2.883171 +0.009734 +2.000004 +0.000001
-4.7 +2.934897 +0.016942 +2.000007 +0.000004
-4.6 +2.994263 +0.016652 +2.000016 +0.000009
-4.5 +3.056489 +0.018124 +2.000024 +0.000021
-4.4 +3.120466 +0.016452 +2.000123 +0.000061
-4.3 +3.181369 +0.021359 +2.000364 40.000143
-4.2 +3.249204 +0.018402 +2.001005 +0.000281
-4.1 +3.310359 +0.023132 +2.002860 +0.000471
-4.0 +3.383610 +0.011025 +2.006538 +0.000821
-3.9 +3.447899 +0.022447 +2.017944 +0.001406
-3.8 +3.515682 +0.018598 +2.045490 40.002697
-3.7 +3.587622 +0.012760 +2.116417 +0.005189
-3.6 +3.670765 +0.019860 +2.293460 +0.012844
-3.5 +3.742075 +0.024122 +2.508752 +0.020233
-3.4 +3.822000 +0.018956 +2.747936 +0.036301
-3.3 +3.893970 +0.017796 +2.871995 +0.035952
-3.2 +3.981393 +0.024583 +2.962444 +0.035956
-3.1 +4.050298 +0.017449 +3.035517 +0.029312
-3.0 +4.133964 +0.026042 +3.082995 +0.030354
-2.9 +4.212235 +0.025142 +3.189069 +0.036420
-2.8 +4.294585 +0.029541 +3.392010 +0.043118
2.7 +4.375589 +0.017649 +3.655683 +0.043982
-2.6 +4.456201 +0.026611 +3.879189 +0.033892
-2.5 +4.545911 +0.022001 +3.927999 +0.023130
-2.4 +4.623642 +0.021501 +3.970532 +0.018830
-2.3 +4.713916 +0.029229 +4.009007 +0.016552
-2.2 +4.798170 +0.028920 +4.037212 +0.015280
-2.1 +4.880419 +0.029298 +4.115878 +0.018671
-2.0 +4.968512 +0.024441 +4.267119 +0.022468
-1.9 +5.052326 +0.022334 +4.544293 +0.031251
-1.8 +5.139253 +0.030539 +4.762987 +0.033040
-1.7 +5.227688 +0.051572 +4.866220 +0.028355
-1.6 +5.314192 +0.018927 +4.955101 +0.028558
-1.5 +5.403660 +0.021306 +5.030537 +0.030934
-14 +5.489782 +0.025974 +5.098210 40.035223
-1.3 +5.578366 +0.028326 +5.190183 +0.047100
-1.2 +5.666919 +0.032740 +5.420303 +0.053071
-1.1 +5.754146 +0.020159 +5.665965 +0.048751
-1.0 +5.843856 +0.011771 +5.882139 +0.046855
-0.9 +5.931309 +0.026743 +5.934199 +0.044811
-0.8 +6.019431 +0.034100 +6.034486 +0.043969
-0.7 +6.107615 +0.028906 +6.106881 +0.062831
-0.6 +6.195266 +0.017643 +6.149598 +0.072681




-0.5 +6.281296 | +0.028198 +6.406233 +0.093832
-0.4 +6.372849 | +0.029871 +6.583948  |+0.103595
-0.3 +6.459179 | +0.038297 +6.786758  |+0.068000
-0.2 +6.547036  |+0.032811 +6.918219 +0.077881
-0.1 +6.633839 | +0.018306 +6.965226 | +0.034042
+0.0 +6.722513 | +0.026833 +7.008555 +0.034042
+0.1 +6.806090 | 4-0.029384 +7.116937  |+0.056651
+0.2 +6.898661 40.027031 +7.368022  |+0.145205
+0.3 +6.982928 | +0.034052 +7.461403 +0.143748
+0.4 +7.063049 | +0.040539 +7.843200 | +0.124731
+0.5 +7.153682 | +0.027810 +7.985141 +0.107265
+0.6 +7.238487 | +0.037560 +8.038756  |+0.078324
+0.7 +7.327173  |+0.029914 +8.016139 +0.028747
+0.8 +7.412065  |+0.022930 +8.063458  |+0.025271
+0.9 +7.489670 |+0.021011 +8.120954  |+0.096210
+1.0 +7.570864 |4-0.020641 +8.255501 +0.192727
+1.1 +7.658912 | 4-0.011750 +8.709194  |4-0.135730
+1.2 +7.736232 | +0.027300 +8.817749 +0.091703
+1.3 +7.822420 | 4-0.018079 +8.994548 | +0.048407
+1.4 +7.898839  |+0.014423 +9.026712 | +0.046844
+1.5 +7.974030 | +0.034715 +9.041305 +0.041363
+1.6 +8.056038  |+0.014513 +9.090873  |+0.039118
+1.7 +8.135464 | +0.032067 +9.208324 | +0.035563
+1.8 +8.208452 | 4-0.021635 +9.482027  |+0.021857
+1.9 +8.286496 | +0.017512 +9.674730  |+0.012889
+2.0 +8.356670 | +0.010235 +9.860978  |+0.005590
+2.1 +8.426331 +0.031939 +9.946095  |+0.002697
+2.2 +8.501034 | +0.015649 +9.977586 +0.001392
+2.3 +8.574974 | 4-0.016645 +9.991786  |+0.001019
+2.4 +8.640520  |+0.015122 +9.997221 +0.000455
+2.5 +8.706805  |+0.016108 +9.998957  |+0.000274
+2.6 +8.771075 | +0.015997 +9.999569  |+0.000133
+2.7 +8.840801 +4-0.023600 +9.999879 -+0.000060
+2.8 +8.900054 | +0.015195 +9.999953  |+0.000022
+2.9 +8.963548 | +0.021800 4+9.999999 -+0.000008
+3.0 +9.018084 | 4-0.011670 4+9.999992  [4-0.000003
+3.1 +9.081703  |+0.012430 +9.999999  |+4-0.000001
+3.2 +9.135721 +-0.015993 4+9.999999 -+0.000001
+3.3 +9.187430 | +0.016366 +9.999999 | +0.000000
+3.4 +9.240778 | +0.013390 -+10.00000 +-0.00000
+3.5 +9.287409 | +0.011733 +10.00000 +0.00000
+3.6 +9.337543 | +0.016078 +10.00000 +0.00000
+3.7 +9.380295 | +0.008802 +-10.00000 +-0.00000
+3.8 +9.422328 | +0.007795 +10.00000 +0.00000
+3.9 +9.462889 | +0.009757 +-10.00000 +-0.00000
+4.0 +9.499485 | +0.010482 +10.00000 +0.00000

TABLE IV. The internal energy (Hartree) of Hio in the STO-6G basis at its equilibrium bond length of 1.786 a.u. The exact,
non-relativistic ground state energy is -5.424570 Hartree.

1/kpT| AFQMC| MET
0.01 |0.0803(9)] 0.093683
0.1 |-0.151(4) |-0.027001
1| -2.01(1) |-1.219754
2 | -3.29(2) |-2.353559
5 | -4.77(3) |-4.105092
10 | -5.30(5) [-4.841360
16 | -5.38(4) [-5.059083
20 | -5.38(2) |-5.117851
25 | -5.44(6) |-5.161809
33.3 | -5.41(2) |-5.204183




TABLE V. The internal energy (Hartree) of Hio in the STO-6G basis at a stretched bond length of 2.4 a.u.

non-relativistic, ground state energy is -5.227936 Hartree.

1/kpT| AFQMC | MFT
0.01 |-1.7488(2)[-1.739656
0.1 |-1.865(1) |-1.773753
0.2 |-1.981(3) |-1.811868
0.5 |-2.287(4) |-1.927442
1| -2.723(9) |-2.122643
2 | -3.41(3) |-2.510962
5 | -4.38(3) |-3.483536
10 | -4.91(4) [-4.289207
16 | -5.14(4) [-4.620001
20 | -5.13(3) |-4.714858
25 | -5.19(5) |-4.780650
33.3 | -5.2(1) |-4.837063

The exact

TABLE VI. The internal energy of a 4 x 2 single-band Hubbard model with U/¢ = 4 at half filling on a square lattice. All

energies are in units of ¢.

1/ksT|AFQMC| MEFT
0.01 | 7.80(2) | 7.880007
0.1 | 6.03(3) | 6.806939
1 | -2.8(2) |-0.203592
2 | -4.3(1) |-2.539894
4 | -5.7(1) |-3.784092
10 | -5.9(1) [-3.999455
20 | -5.9(1) |-4.000000
25 | -6.0(1) |-4.000000

TABLE VII. The internal energy of a 4 X 2 two-band Hubbard-Kanamori model with U/t = 4,J/t = 1 at half filling on a

square lattice. All energies are in units of .

1/kpT|AFQMC| MFT
0.01 |27.53(6) |27.760014
0.1 | 23.5(1) |25.613879
1 | 52(3) [11.592815
2 | 1.1(5) |6.920213
4 | -1.1(3) | 4.431817
10 | -0.8 (6) | 4.001090
16 | -0.6 (5) | 4.000003

TABLE VIII. Average absolute value of the phase angle (Degrees) for various ab initio systems at different temperatures, under
free propagation and background subtraction. Slashes indicate that error bars were not able to be converged for the given

system.
Free Propagation Background Subtraction
1/kgT| H20 Co H>O Co Hio (Equilibrium) |Hio (Stretched)
0.01 [41.8(9)| 26.3(6) [0.030(2)[4.3(5)E-6 5.3(1)E-4 3.9(1)E-6
1 91(2) 89(2) 3.4(7) 0.6(3) 1.03(4) 0.40(1)
2 89(2) 89(2) 8(1) 2.2(8) 3.6(1) 1.58(5)
5 / / 27(1) 11(1) 14.4(6) 10.9(3)
10 / / 46(1) 29(2) 28.4(7) 29.5(6)
16 / / 53(1) 56(2) 37.7(7) 41.6(7)
20 / / 57(1) 74(2) 40.2(7) 57.1(9)
25 / / 58(1) 73(2) 54.2(8) 50.6(8)
33.3 / / 64(1) 75(1) 53.2(9) 74(1)




G. Tabulated Data for Other First and Second Row Atoms and Molecules

Benchmark results for other first and second row atoms in the periodic table not discussed in the text and Hs are
provided below at various inverse temperatures, computed using ED, AFQMC, and MFT.

TABLE IX. The internal energy (Hartree) of Hz in the STO-3G Basis.

1/kT ED AFQMC | MFT
0.01 [-0.608951 [-0.6090(1) |-0.608298
0.1 |-0.616675|-0.6168(4)|-0.610226
1 |-0.686456|-0.6862(6) [-0.629880
5 |-0.870669| -0.871(2) |-0.720445
10 |-0.974220| -0.972(3) |-0.823580
20 |-1.048646| -1.047(4) |-0.957009
50 |-1.066490| -1.069(2) [-1.038881
100 |-1.066602| -1.072(7) |-1.041605

TABLE X. The internal energy (Hartree) of the helium atom in the MIDI Basis.

1/ksT|] ED | AFQMC | MFT
0.01 |-0.212171]-0.2118(7)]-0.207955
0.1 |-0.370275| -0.366(3) |-0.327364
0.2 |-0.545960| -0.543(2) |-0.460965
0.5 |-1.047245| -1.036(6) |-0.858395
1 |-1.722136| -1.715(5) |-1.462187
2 |-2.502106 | -2.506(5) |-2.276931
5 |-2.846430| -2.846(3) |-2.813331
10 [-2.850574 | -2.851(4) |-2.835515
20 |-2.850577| -2.851(5) |-2.835598
50 |-2.850577| -2.853(5) |-2.835598

TABLE XI. The internal energy (Hartree) of the lithium atom in the MIDI Basis.

B

ED

AFQMC

MFT

0.01
0.05
0.1
0.2
0.5
1
2
5
10
20
50
100

-4.527322
-4.650689
-4.800995
-5.085673
-5.787149
-6.535186
-7.152696
-7.288515
-7.335787
-7.387277
-7.415739
-7.418664

“4.527(2)
-4.650(3)
-4.801(5)

)

-4.524944
-4.637345
-4.771334
-5.018451
-5.615290
-6.270235
-6.920131
-7.253609
-7.289847
-7.328862
-7.365749
-7.393584
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TABLE XII. The internal energy (Hartree) of the boron atom in the MIDI Basis.

B ED | AFQMC | MFT
0.01|-11.082440| -11.08(1) |-11.080260
0.1 |-13.917083| -13.93(4) |-13.752883
0.2 |-16.875802| -16.88(5) |-16.377219
0.5 |-21.866141| -21.85(3) |-21.033821
1 |-23.240278|-23.236(9) |-22.891464

2 ]-23.591185| -23.57(1) |-23.236813
5 1-24.100273| -24.08(2) |-23.722880
10 |-24.336156 | -24.32(3) |-24.021959

20 [-24.426170| -24.4(1) |-24.198037
50 |-24.455867| -24.6(3) [-24.250785
100 |-24.462663| -24.3(2) |-24.273218

TABLE XIII. The internal energy (Hartree) of the carbon atom in the MIDI Basis. The slash indicates that numerical underflow
or overflow occurs at the corresponding temperature.

B ED |AFQMC| MFT
0.01[-19.206839[-19.22(2)|-19.191994
0.1 [-25.185109|-25.17(6) |-24.725267
0.2 |-30.220594|-30.19(6) | -29.280635
0.5 [-35.001762|-34.91(1) |-34.271457
1 |-35.742693|-35.75(1) |-35.225802
2 |-36.444645|-36.43(2) |-35.843619
5 |-37.231883|-37.23(3)|-36.731085
10 |-37.435310|-37.50(6) |-37.011903
20 |-37.498072| -37.6(4) |-37.078776
50 |-37.512651| -37.4(3) |-37.081044
100 |-37.514843|  /  |-37.081044

TABLE XIV. The internal energy (Hartree) of the nitrogen atom in the MIDI Basis. The slash indicates that numerical
underflow or overflow occurs at the corresponding temperature.

B ED |AFQMC| MFT
0.01-30.592444]-30.60(2) |-30.552265
0.1 |-41.066521|-41.05(7)|-40.218672
0.2 |-47.408502|-47.39(4) | -46.282256
0.5 |-50.717899|-50.70(2) |-50.074317
1 [-51.729096|-51.69(2) |-50.946742
2 |-52.956080|-52.94(2) |-52.183746
5 |-53.891886|-54.00(3) |-53.340733
10 [-54.047597| -54.0(1) |-53.499021
20 |-54.109484/ -53.6(6) |-53.515755
33.3|-54.136716| -54.2(4) |-53.519663
50 |-54.153396| -53.9(5) |-53.526544
100 [-54.167023|  /  |-53.559940
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TABLE XV. The internal energy (Hartree) of the oxygen atom in the MIDI Basis. The slash indicates that numerical underflow

or overflow occurs at the corresponding temperature.

I3 ED AFQMC MFT
0.01{-46.029567 |-46.03(6) |-45.948682
0.1 |-61.673823|-61.67(7)|-60.517364
0.2 |-67.666379|-67.66(3)|-66.682083
0.5 [-69.976063|-69.95(2) |-69.122111

1 [-71.532594(-71.50(3) |-70.513328

2 |-73.308290(-73.32(3)|-72.441522

5 |-74.307581|-74.35(4) |-73.756461
10 |-74.406445| -74.3(1) |-73.824955
20 |-74.435497| -74.4(3) |-73.827113
33.3|-74.441517| -73.7(6) |-73.827118
50 |-74.443573 / -73.827118
100 |-74.444625 / /

TABLE XVI. The internal energy (Hartree) of the fluorine atom in the MIDI

underflow or overflow occurs at the corresponding temperature.

B ED |AFQMC| MFT
0.01|-65.761204]-65.76(5)|-65.618951
0.1 |-86.145314|-86.12(7)|-84.901888
0.2 |-90.802146|-90.78(2) | -89.992038
0.5 |-93.122699|-93.09(3)|-92.028526

1 |-95.473340(-95.44(4) |-94.288254

2 |-97.893048(-97.90(3) |-97.038210

5 |-98.862027|-98.83(3)|-98.446321
10 [-98.922403| -98.9(1) |-98.473558
20 |-98.936059| -98.8(2) |-98.474385
25 |-98.936614| -99.1(4) |-98.474813
33.3|-98.936928|  /  |-98.475728
50 |-98.937363| /  |-98.478298
100 [-98.938512|  /  |-98.490596

Basis.

The slash indicates that numerical

TABLE XVII. The internal energy (Hartree) of the neon atom in the MIDI Basis. The slash indicates that numerical underflow
or overflow occurs at the corresponding temperature.

B ED AFQMC MEFT

0.01]-115.219180|-115.218(3) |-115.154574
0.1 [-116.435430| -116.43(1) |-115.913272
0.2 [-117.606155 | -117.60(2) |-116.752691
0.5 [-120.446996 | -120.43(3) |-119.149895
1 |-123.662816| -123.62(4) |-122.371375
2 |-126.701453| -126.69(3) |-125.813576
5 |-127.889630] -127.88(2) |-127.649640
10 |-127.905179| -127.88(4) |-127.757574
20 |-127.905199| -127.92(5) |-127.758803
50 |-127.905199| -127.9(1) |-127.758803
100 |-127.905199 / -127.758803

H. Computational Scaling

As mentioned in the main text, our method scales as O(N3)-O(N%), where N is the number of orbitals (basis set
size). As with most quantum Monte Carlo algorithms, this scaling stems from the fact that our algorithm requires
a large number of matrix multiplications, inversions (using LU factorization), and diagonalizations, all of which have
an O(N?) scaling. The CPU time vs. the number of orbitals for several systems is summarized and plotted with a
log scale in Figure 1 below, illustrating a typical quantum Monte Carlo power law scaling.
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FIG. 1. CPU time vs. number of orbitals for Hy (STO-3G, N=2), Be (MIDI, N=3), H,O (STO-3G, N=7), C2(STO-6G, N=8),
Hio (STO-6G, N=10), and the 4x2 2-orbital Hubbard-Kanamori model (N=16) at 8 = 1, A7 = 0.05 with 128 walkers and 10
blocks, where NN is the total number of orbitals in the basis. Dashed line is a fitting that illustrates power law scaling. Note
that the y-axis is given using a log scale.

I. Calculation of Statistical Errors

In our finite temperature AFQMC, each walker samples the auxiliary field space and carries information about
physical observables. We call propagation in imaginary time from inverse temperature 0 to 3 one block. The calculation
is repeated M times to get M blocks, and N walkers are used per block. To calculate the error bar on physical
observables (internal energy in our case), we first average the internal energy over all N walkers within each block as
E;, where ¢ = 1,2,..., M. Then, from standard error analysis, the error bar on the average internal energy is obtained
as

S (B — E)?
o=\ =ar-nar (38)

where E is the mean of the internal energy. Note that, while more sophisticated error analyses that address correlations
among samples, such as reblocking, exist, we believe that our simple model of statistical independence will still provide
sound observable estimates.



