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Supplementary Videos: 

Supplementary Video 1: Observation of the Brownian motion of the colloidal Au-Fe nanohelices in 

water (upper panel) and 50% glycerol-water mixture (lower panel) in a dark-field optical microscope. 

 

Supplementary Video 2: Observation of the aligned Au-Fe nanohelices along the directions of the 

external magnetic fields at 𝐁 = 5 mT parallel to the x-axis (𝜃𝐁 = 0
o
, upper panel) and parallel to the y-

axis (𝜃𝐁 = 90
o
, lower panel) in 50% glycerol-water mixture in a dark-field optical microscope. 

 

Supplementary Video 3: Observation of the rotation of the Au-Fe nanohelices in the presence of a 

continuously modulated magnetic field at different frequencies: Brownian motion (top left), 𝑓𝐁 = 0.1 

Hz (top right), 0.5 Hz (bottom left), and 1 Hz (bottom right). 

 



  

 

Figure S1: Schematic views of the experimental setups. (a) An inverted dark-field optical microscope 

with a 3D Helmholtz coil system. (b) A commercial CD spectrometer (not shown) combined with a 

3D Helmholtz coil system.  



Supplementary Note S1: Characterization of the chiral magneto-plasmonic 

nanohelix 

  Au-Fe nanohelices were grown on an array of the Au nanoparticles, patterned by BCML, in our 

nanoGLAD system
1
, Figures S2a-c. Its compositional analysis was performed using scanning TEM 

(STEM) imaging with energy-dispersive X-ray spectroscopy (EDX) measurements. Figure 2c shows 

the STEM image of a single two-turn left-handed Au-Fe nanohelix and corresponding images of EDX 

false-color elemental maps of Au, Fe, and O, respectively, which reveal nanoscale mixing between Au 

and Fe. The atomic ratio of Au to Fe was approximately 46.7:53.3 (±1.8%) based on integrated EDX 

intensity. This is consistent with measurements from inductively coupled plasma atomic emission 

spectroscopy (ICP-OES) which indicates a ratio of 40.8:59.2 (±6.1%). Figure S3 shows the Auger 

depth profile of the Au-Fe nanohelices on Si wafer (similar to what is shown in Figure S2b) as a 

function of the etching time (i.e. depth) by Ar plasma. The low oxygen signal during the b phase 

relative to the a phase suggests that the oxygen is confined to the nanoparticles’ surface. The structural 

dimensions of (left-handed) Au-Fe nanohelices are deduced from transmission electron microscopy 

(TEM) images of 100 individual nanohelices. (See Figure S4 and Supplementary Table 1).  

  



 

Figure S2: (a) nanoGLAD onto a surface seeded with Au nanodots (BCML). Lower panel shows a 

top view SEM image of an array of Au nanoparticles 12 nm in diameter and with 100 nm gaps 

between nanoparticles. (b) Growth of 2-turn Au-Fe nanohelices on a Au/SiO2 array using nanoGLAD. 

Lower panel shows the corresponding SEM image (tilted view) of the 2-turn Au-Fe nanohelices ~170 

nm in height. (c) Large-area TEM image of Au-Fe 2-trun left-handed nanohelices.  



 

Figure S3: Auger depth profiling of the Au-Fe nanohelix as a function of the etching time by Ar 

plasma. Auger electron scattering intensities of O (blue square), Fe (red top triangle), Au (yellow 

bottom triangle), and Si (green circle) according to the regions of (a) a native oxide layer on top of the 

helix, (b) a body of the Au-Fe helix, and (c) a Si substrate. 

 

Figure S4: Schematic view of 2-turn left-handed nanohelix showing dimensions of the seed particle 

and the nanostructure that grows upon it.   

 

Supplementary Table 1: Statistical analysis of 100 individual Au-Fe 2-turn left-handed nanohelices. 

 

 

2 turn left hand helices 𝒅𝒔 𝒉𝒄 𝒉 2𝒓 𝟐𝑹 

Mean [nm] 12.1 9.2 168.8 28.3 82.9 

Standard deviation [nm] 1.8 2.9 8.4 4.1 9.3 

Percentage Standard deviation [%] 14.9 31.5 5.0 14.5 11.2 



 

Supplementary Note S2: Magnetic alignment of nanohelix 

  To completely align a nanohelix with the external magnetic field 𝐁, the magnitude of the magnetic 

field strength can be estimated by considering 𝑚𝑟𝐁 > 𝑘𝐵𝑇, where 𝑚𝑟 is the remanence of a single Au-

Fe nanohelix  in Figure 2d (1.174×10
-14

 emu), 𝐁 is the magnetic field strength, 𝑘𝐵 is the Boltzmann 

constant (1.38×10
-23

 J·K
-1), and 𝑇 is the temperature (here 300K). Therefore, the minimum external 

magnetic field 𝐁𝐦 strength is given by 

𝐁𝐦 =
𝑘𝐵𝑇

𝑚𝑟
= ~0.4 mT     (1) 

  This suggests that the Au-Fe nanohelices can be aligned to the external magnetic field of 𝐁 > 0.4 mT 

(40 G). To test that the helix is properly aligned by the field 𝐁𝐦 , we have observed individual 

nanohelices in solution by using (1) SEM, (2) DF, and (3) CD. (1) For the SEM analysis, a colloidal 

solution of Au-Fe nanohelices was drop-cast on a clean Si support and exposed to an external 

magnetic field with a permanent magnet for ~5 min. Then, the solution was rapidly dried with N2 gas 

and the solution vacuum dried. Figure S5 shows the SEM images, which clearly show that the (long 

axes of the) nanohelices are aligned along the magnetic field. (2) Using the dark-field optical 

microscope, we can observe the alignment of the helix in real-time. The Au-Fe nanohelices were 

suspended in 50% glycerol in water (to suppress the Brownian motion) and exposed to the static 

(Supplementary Video 2) or rotating (Supplementary Video 3) magnetic field at 𝐁 = 5 mT and, again, 

the long axis of the nanohelices was well aligned parallel to the direction of the magnetic field. (3) 

Finally, we have measured the chiroptical responses of the colloidal Au-Fe nanohelices under the 

static magnetic field (red: 𝐁 ∥ 𝐤, violet: 𝐁 ⊥ 𝐤) with different intensities ranging from 0.5 to 7 mT. 

Figure S6 shows the chiroptical responses at λ = 880 nm of the colloidal Au-Fe nanohelices as a 

function of the magnetic field strength. Again, most of the nanohelices can be aligned with a magnetic 

field of at least 𝐁 ~ 1 mT.  



 

Figure S5: Visualization of the magnetic anisotropy of the Au-Fe nanohelices. (a) An experimental 

scheme and (b) its resultant SEM image. 

 

 

Figure S6: (a) Chiroptical responses of the colloidal Au-Fe nanohelices at λ = 880 nm in the presence 

of a static magnetic fields along 𝜃𝐁 = 0
o
 (red line) and 𝜃𝐁 = 90

o
 (violet line). The strength of the 

magnetic field ranges from 0.5 to 7 mT. (b) The corresponding chiroptical responses re-plotted as a 

function of the magnetic field intensity.  



Supplementary Note S3: Translational Brownian diffusion coefficient of 

nanohelix 

  By comparing the theoretical and experimental translational diffusion coefficients 𝐷𝑡  of the 

nanohelix, we can evaluate whether a single nanohelix is observed through the dark-field optical 

microscope. We tracked the centroid positions of 10 nanohelices in fluids with two different 

viscosities for 10 sec at 20 frames·sec
-1

 and calculated the translational Brownian diffusion coefficient 

𝐷𝑡 (= MSD/4𝑡), where MSD is the mean squared displacement of the nanoparticles, Figures S7a-e
2, 3

. 

This gave 𝐷𝑡 = 2.38 ± 0.05 µm
2
·sec

-1
 in pure water and 𝐷𝑡 = 0.37 ± 0.01 µm

2
·sec

-1
 in a 50% glycerol-

water mixture, which were analytically calculated using a MATALB code developed by our group
2
, 

Figure S7e (See also Supplementary Video 1). By considering the geometry of the nanohelix as an 

ellipsoid with an aspect ratio (AR) of 2 (ℎ 2𝑅⁄ ), we can estimate the theoretical 𝐷𝑡 of the nanohelix 

from the Einstein-Smoluchowski relation as
4
  

𝐷𝑡 =
(𝐷𝑎+𝐷𝑏)

2
      (2) 

where 𝐷𝑎  is the diffusional coefficient at the long axis of the ellipsoid 𝑎 and 𝐷𝑏  is the diffusional 

coefficient at the short axis of the ellipsoid 𝑏. When 𝐴𝑅 (𝑎 𝑏⁄ ) ≫ 1, where 𝐷𝑎and 𝐷𝑏 are given as
5
 

𝐷𝑎 =
𝑘𝐵T ln 𝐴𝑅

2𝜋𝜂𝑎
      (3) 

𝐷𝑏 =
𝑘𝐵T ln 𝐴𝑅

4𝜋𝜂𝑎
      (4) 

where the viscosity of the solution, 𝜂 is 1.0049 cP for water and 8.3968 cP for the 50% glycerol-water 

mixture
6
. Thereby, 𝐷𝑡 is 3.5 µm

2
/sec in water and 0.38 µm

2
/sec for 50% glycerol in water, in good 

agreement with the measured values. This indicates that the tracked nanohelices act as discrete 

particles undergoing Brownian motion. 

 

 



 

Figure S7: Brownian motion of the Au-Fe left-handed nanohelices in (a) water and (b) 50% glycerol 

in water as observed by single particle tracking using dark-field optical microscopy. Each image 

shows 10 nanoparticle trajectories, where each trajectory’s start position is set to (x = 0, y = 0) in (c) 

water and (d) 50% glycerol in water. (e) Corresponding MSDs of Au-Fe nanohelices plotted as a 

function of time (black square: water, red circle: 50% glycerol).  

 

  



Supplementary Note S4: Molar CD 

For the evaluation of the molar CD of the Au-Fe nanocolloids, we calculated the molar concentration 

of colloidal nanohelices in 1 mL solution as 20.3 pM. The molar CD of the colloidal nanohelices is 

given as
7
, 

Molar CD = CD 𝑐 ∙ 𝑙⁄  [
o 
· M

-1
 · cm

-1
]    (5) 

where 𝑐 is the molar concentration of the colloidal nanohelices, 𝑙  is the optical path length of the 

cuvette (𝑙 = 0.5 cm). Figure S8 shows the molar CDs of the colloidal Au-Fe nanohelices for the 

different 𝜃𝐁 plotted as a function of λ. 

 

Figure S8: Chiroptical responses of the colloidal Au-Fe left-handed nanohelices in Figure S9a re-

plotted with the y-axis of the molar CD. 

  



Supplementary Note S5: DDSCAT 

  For the numerical calculation of the Au-Fe nanohelices CD spectrum, we first calculated the 

dielectric function of Au-Fe as a function of wavelength based on the optical constants provided by 

Palik
8
. An atomic ratio of 1:1.5 of Au:Fe was assumed which is based on the ICP-OES results. The 

chiroptical response of the Au-Fe nanohelix alloy was computed using the DDASCAT 7.2
9
. The 

scattering and absorption of 2-turn left-handed helices were calculated for a geometry that is based on 

the statistical analysis of the TEM images of the 100 individual nanohelices. The helix is modelled as 

an array of polarizable point dipoles spaced 2.161 nm apart, and we calculated their interactions using 

the code developed by our group, Figure S9
1, 10

.  

  The optical response was computed by DDSCAT by averaging 342 orientations (18𝜃 × 19𝛽) of the 

Au-Fe nanohelix across the wavelength range from 200 nm to 1,100 nm. 𝜃 and 𝛽 are the rotational 

angles of the long-axis and short-axis of the helix respectively.  

The application of the external magnetic field in the experiment constrains the helix’s 𝜃 rotation, but 

not its rotation about 𝛽. Thereby, for the comparison between the calculation and experiment, the 

theoretical CD spectra have been recalculated as    

𝐶𝐷𝑒𝑥𝑝(𝜃𝐁) =  <  𝐶𝐷𝑐𝑎𝑙(𝜃) >𝛽     (6) 

and both are plotted in Figure S10. 

 

Figure S9: Arrangements of dipoles with 2.161 nm spacing according to the statistical analysis of the 

Au-Fe nanohelix geometry.  

 

 

 



 

Figure S10: Experimental and theoretical chiroptical responses of the Au-Fe left-handed nanohelices 

as functions of λ and 𝜃𝐁. (a) The measured CDs of colloidal Au-Fe left-handed nanohelices at 𝐁 = 1 

mT with 𝜃𝐁  ranging from 0
o
 to 90

o
 in 10

o
 intervals. (b) Their corresponding ΔCDs plotted as a 

function of λ. (c) The numerically calculated CDs of Au-Fe left-handed nanohelices plotted as a 

function of λ by varying the 𝜃𝐁 ranging from 0
o
 to 90

o
. (d) Their corresponding ΔCDs plotted as a 

function of λ. 

  



 

Figure S11: ΔCDs of the colloidal Au-Fe left-handed nanohelices at λ = 360 nm (violet line) and 

1,000 nm (red line) for 𝐁 = 1 mT at 𝑓𝐁 =  (a) 0.1 Hz, (b) 0.5 Hz, (c) 5 Hz, (d) 10 Hz, (e) 50 Hz, and (f) 

500 Hz. (g) A continuous modulation of the ΔCDs at 𝑓𝐁  = 0.5 Hz. The FFT analysis on the 

corresponding chiroptical response at (h) λ = 360 nm and (i) 1,000 nm. Each label indicates the 

frequency 𝑓CD that is coincident with 2𝑓𝐁. 

  



Supplementary Note S6: Viscosity sensing 

In order to derive an equation that describes the nanorheology of our particle system, we have applied 

and adapted the theory for the hydrodynamic response of magnetic nanorods
11

. 

 

At steady state, the torque due to hydrodynamic drag will be balanced by the applied magnetic torque: 

 

𝝉𝑫 = 𝝉𝐁 

𝜒𝜂𝜔 =  𝐦 × 𝐁      (7) 

where 𝜒 is the hydrodynamic shape constant (for a sphere 𝜒 = 8 𝜋𝑅3)
12

, 𝜂 is the dynamic viscosity of 

the medium, 𝐁 is the vector of the applied magnetic field, and 𝐦 is the vector of the magnetic moment 

along the long axis of the nanohelix. 𝜔 is the angular velocity of the nanohelix which is given as  

         𝜔 =
𝑑𝜃𝑚

𝑑𝑡
       (8) 

where 𝜃𝑚  is the angle between 𝐦 and the wave vector 𝐤 of the incident light. By considering the 

angular function 𝜃𝐁 = 2𝜋𝑓𝐁𝑡  and 𝜙 = 𝜃𝐁 −  𝜃𝑚  where 𝜃𝐵  is the angle between 𝐁  and 𝐤 , 𝑓𝐁  is the 

frequency of the applied rotating magnetic field, Eq.(8) can be written as 

     
𝑑𝜃𝑚

𝑑𝑡
= 2𝜋𝑓𝐁 −

𝑑𝜙

𝑑𝑡
      (9) 

For a steady rotational of the nanohelix (i.e., below the step-out frequency) 𝑑𝜙 𝑑𝑡⁄  is zero and Eq. (7) 

can be rewritten as 

sin 𝜙 =
2𝜋𝜒𝜂

𝑚𝑟𝐁
 𝑓𝐁     (10) 

For a given magnetic field strength and a frequency below the step-out, the 1
st
 derivative 𝑑𝑠𝑖𝑛 𝜙 /𝑑𝑓𝐁 

is a function of the viscosity,  

𝑑sin 𝜙

𝑑𝑓𝐁
=

2𝜋𝜒

𝑚𝑟𝐁
𝜂      (11) 



Figure S12 shows the schematic view of the designed phase sensitive detection system with the 

integrations of two lock-in amplifiers. The first lock-in-amplifier (LIA 1) reduces the noise level of the 

chiroptical response containing 𝑓CD  component by referencing the signal from the photomultiplier 

(PMT) to the photoelastic modulator (PEM) which modulates the light from left- to right-circularly 

polarized. The second lock-in LIA2 references this signal to the 𝑓𝐁 from the coil system. LIA2 thus 

provides the phase difference between the optical response and the applied magnetic field. Since the 

measured phase angle 𝜙′ also contains a phase lag due to the inductance phase lag of the coil system 

𝜙𝐿, and the initial chiroptical phase lag 𝜙0
′ , one obtains the resultant geometrical phase lag 𝜙:  

𝜙 =
1

2
𝜙′ −  𝜙0

′ − 𝜙𝐿     (12) 

The calibrated phase lag 𝜙, which is small and expressed in radians, can be fitted by a 2
nd

 order 

polynomial function. For example, in the case of water (η = 1.0049 at T = 20
o
C), the phase is 

approximately given as 

𝑠𝑖𝑛 𝜙 ~ 𝜙~ 0.0085 + 0.0304𝑓𝐁     (13) 

Based on Eq. (13), we can obtain the 1
st
 derivative (𝑑𝑠𝑖𝑛 𝜙 𝑑𝑓𝐁⁄ ), 

𝑑𝑠𝑖𝑛 𝜙

𝑑𝑓𝐁
= 0.0304      (14) 

Calibration measurements for glycerol-water mixtures of differing viscosities (see Figure S13) are 

used to obtain a reference curve for the absolute dynamic viscosity, 

𝑑𝑠𝑖𝑛 𝜙

𝑑𝑓𝐁
= 0.00241𝜂 + 0.02787    (15) 

Figure 4b shows the experimental values of  𝑑𝑠𝑖𝑛 𝜙 · 𝑑𝑓𝐁
−1

 as a function of the theoretical viscosity, 

𝜂 of the glycerol-water mixture. With its 2
nd

 derivative 𝑑2sin𝜙 · 𝑑𝑓𝐁
−1 𝑑𝜂−1  we can calculate the 

shape constant, 𝜒  

𝜒 = 0.00241
𝑚𝑟𝐁

2𝜋
= 1.35 × 107 nm3    (16) 

An order of magnitude estimate of this quantity can be calculated by modelling our helix as a cylinder. 

In this case the shape constant is given by 
13

, 

𝜒 =  
𝜋𝑙3

3 g(
𝑙

𝑑
)
      (17) 

where g (
𝑙

𝑑
) = ln (

𝑙

𝑑
) − 0.662 + 0.917

𝑙

𝑑
− 0.050 (

𝑙

𝑑
)

2
.
14

 With a length 𝑙 = 168.8 nm and diameter 𝑑 

= 82.9 nm this predicts a shape constant of 𝜒 = 2.95×10
6
 nm

3
. 



 

Figure S12: Schematic diagram of the phase sensitive chiroptical measurement system.  

 

 

Figure S13: Phase angle, 𝜙  of the colloidal Au-Fe nanohelices for glycerol-water mixtures of 

differing concentrations and hence viscosities, as a function of 𝑓𝐁 at 𝐁 = 3 mT, λ = 880 nm and T = 

20
o
C.  



 

Figure S14: In situ nanorheology measurements with colloidal Au-Fe nanohelices in glycerol-water 

mixtures in the presence of different concentrations of polystyrene microspheres. CD (left panel) and 

extinction (right panel) spectra of the colloidal Au-Fe nanohelices in (a) water and (b) 20% glycerol-

water mixture surrounded by the polystyrene microspheres. The 𝜙 measurments as a function of 𝑓𝐁 at 

λ = 880 nm, 𝐁 = 3 mT and T = 20
o
C in the presences of (c) water and (d) 20% glycerol-water mixture.  

 

 



 

Figure S15: DLS measurements of the colloidal Au-Fe nanohelices in the presence of water after 

different pre-treatments in water (red), blood plasma (orange, for 5 min and blue, for 2h), and whole 

blood (green). 

 

 

Figure S16: DLS measurements of the colloidal Au-Fe nanohelices in 1× phosphate buffer saline 

(PBS) solution at the specified times (red: 2 min, orange: 4 min, yellow: 6 min, green: 8 min, and blue: 

10 min) after sonication. 



 

Figure S17: (a) Extinction and (b) CD spectra of the colloidal Au-Fe nanohelices in the presence of 

different hematocrit levels. In situ nanorheology of bovine blood plasma in the presence of different 

concentrations of the erythrocytes. Measurements using colloidal Au-Fe nanohelices ((c) cattle A and 

(d) cattle B). (e) Their corresponding averaged 𝑑sin𝜙/𝑑𝑓𝐁 as a function of the haematocrit volume 

fraction. 

 

 

Figure S18: Macro rheology of bovine whole blood with different concentrations of 

erythrocytes using a commercial viscometer at shear rates ranging from 2 to 100 s
-1 

at 20
o
C.  
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