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Surface Chemistry

To verify that chemical interaction does not account for the large differences in micro- and

nano-helices propulsion in hyaluronan gels, we performed the same QD-functionalization on

a reference sample of the micro-propellers as was done for the nano-screws. In 5 mg/mL HA

solution, a few of these functionalized micro-screws were actually observed to propel, albeit

very slowly, while the majority of particles still appeared stuck in the gel. The highest speed

observed amounted to about 0.5µm/s (dimensionless velocity 0.06), on average they moved

at 0.11 ± 0.12 µm/s. This corresponds to a dimensionless velocity of about 0.01, which is

still very low compared to the nano-helices. We therefore attribute the very high velocities

observed in the nano-propellers to a size- rather than a surface interaction effect.

Effect of the thermal noise on propulsion of externally ac-

tuated nanomotors

Let us consider the synchronous high-frequency propulsive regime1, i.e. the nanohelix forming

a stable angle θ with the field rotation axis Z, undergoing wobbling/precession synchronously

with the field (the fastest possible frequency is the step-out frequency) and propelling along

the axis of the field rotation with velocity UZ (for notation see Ref. S1). Typically some

low value of the precession angle, e.g. θ ≈ 5◦, is considered as the wobbling-to-swimming

transition threshold.S2 1

The thermal noise may affect the propulsion of a nanomotor in three different ways:

(i) hindering the forced rotation about the helical axis effectively reducing Ω3 (i.e. via ro-

tational diffusion about the helical axis, D‖r); (ii) hindering directionality/steerability by

altering the precession angle θ between the helical axis and the direction of the field rotation
1High-frequency sync regime corresponds to A < ω < ωs−o where ωs−o =

√
A2 + C2 is the step-out

frequency with A = m‖H/κ⊥ and C = m⊥H/κ‖ being the characteristic frequencies of the problem; it is
characterized by a steady precession/wobbling angle 0 < θ < π/2, such that sθ = A/ω (seeS1 for details).
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(via rotational diffusion of the helical axis, D⊥r ) and (iii) hindering forward propulsion (via

translational diffusion along the Z-axis, Dt).

All the above mechanisms are characterized by their respective Péclet numbers (Pe)

that compare the relative importance of the external forcing and noise. The simple scaling

criterion for the minimal size of the nanomotor can be derived from the condition Pe = 1,

i.e. when thermal and external forces are equally important. Note that the mechanisms (i)

and (iii) directly affect the forward propulsion, while (ii) affects directionality/steerability of

the nanomotor. The proper Pe’s for the mechanisms (i) and (iii) are, respectively

Pe‖r =
Ω3

D
‖
r

, Pet =
UZL
Dt

. (S1)

where D‖r = κBT/κ‖ is a rotational (about the symmetry axis) self-diffusion coefficient,

Dt = κBT/(ξ‖c
2
θ + ξ⊥s

2
θ) - translational diffusivity (along the Z-axis), with κ‖ being the

viscous rotational resistance of the helix (i.e. to rotation about the symmetry axis) and ξ‖

and ξ⊥ are the corresponding translational viscous resistance (along and perpendicular to

the helical axis, respectively).

The angular velocity of the propeller about the helical axis in the high-frequency sync

regime readsS1 Ω3 = ϕ̇cθ + ψ̇ = ωcθ = ω
√

1− A2/ω2. The rotational resistance coefficient

κ‖ of the helix of length L can in general be re-written

κ‖ = κ̃‖ηL
3 , (S2)

where η is the dynamic viscosity of the liquid, κ̃‖ is the dimensionless resistance.

Thus from the condition Pe‖r = 1, substituting κ‖ from (S2) we obtain the critical length

of the helix where noise and external driving are equally important,

L‖r∗ =

(
κBT

κ̃‖ηωcθ

)1/3

'
(
κBT

κ̃‖ηω

)1/3

, (S3)
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where the last equality holds for small wobbling angles θ.

Analogously, for the mechanism (iii) the propulsion speed of the nanohelix in high-

frequency sync regime is UZ = −ωc2θB‖/ξ‖ = −ω(1−A2/ω2)B‖/ξ‖, where B‖ is the coupling

viscous resistance coefficient 2. This coefficient scales as B‖ = B̃‖ηL2, where again the dimen-

sionless coefficient B̃‖ depends solely on the geometry. Thus, the condition Pet = 1 yields

2

Lt∗ =

(
κBT

B̃‖ηωc2θ(c2θ + γs2θ)

)1/3

'

(
κBT

B̃‖ηω

)1/3

, (S4)

where γ = ξ⊥/ξ‖ is typically in the range 1.2 – 1.53 and the last equality holds for small

wobbling angles θ. For example, for θ = 20◦ and γ = 1.5 we already have [c2θ(c
2
θ+γs2θ)]

−1/3 '

1.023. Thus, both mechanisms (i) and (iii) possess the same scaling L∗ ∼ (κBT/ηω)1/3 up to

a multiplicative dimensionless geometric factor, i.e. κ̃−1/3‖ and B̃−1/3‖ . Note that in deriving

Eq. (S4) we assumed that the frequency of the forced rotation of the nanohelix is ω, i.e. is not

affected by the thermal noise, while in reality it is ω′ < ω due to mechanism (i). Therefore,

S4 gives a lower estimate of the propeller’s minimal size.

3

The mechanism (ii) responsible for steerability is less obvious than the other two, as it

concerns perturbation the precession angle θ. Altering θ also affects indirectly the propulsion

speed UZ and angular velocity Ω3. Steerability can be quantified by the ratio between the

typical diffusion time driving the helix away from stable precession angle θ, i.e. τd ∼ 1/D⊥r ,

whereas D⊥r = κBT/κ⊥ is a rotational diffusion coefficient OF the helical symmetry axis (i.e.

defined by the auto-correlation 〈θ(0)θ(t)〉 = 2D⊥r t), and the typical relaxation time, τrel of

the helix towards θ.
2We consider here, for simplicity, chirality along the axis, i.e. , that in the body-fixed coordinate frame

the only non-zero component of B is B‖. In general there is non-negligible off-diagonal component of B
resulting in drift in tumbling regime.

3Approximating the propeller by a prolate spheroid, we have γ = 2
(

1−E/2
1+E/2

)
+ O(ε2 ln ε), where E =

(ln 2/ε)−1 and ε = b/a < 1 is the aspect ratio; for ε = 0.25÷ 0.05 we have γ ≈ 1.22÷ 1.52.
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The typical relaxation time of the helix towards the steady angle θ can be found by

considering the dynamics of a small perturbation (primed variables) of a high-frequency

steady-state solution

θ → θ + θ′ , ψ → ψ + ψ′ , ϕ̃→ ϕ̃′ ,

where it was previously found that sθ = A/ω, sψ = −(ω/C)cθ = −
√
ω2 − A2/C. Substitut-

ing this into the equations governing the dynamics (Eqs. 6-8 inS1) we find

−Bϕ̃′cψsθ = ωθ′ + ˙̃ϕ′sθ , (S5)

Aϕ̃′cθ +Bϕ̃′sψsθ = θ̇′ , (S6)

−C(ϕ̃′cψ + ϕ̃′cψcθ) = ˙̃ϕ′cθ + ψ̇′ . (S7)

Here A = m‖H/κ⊥, B = m⊥H/κ⊥, and C = m⊥H/κ‖ are the three characteristic frequencies

of the problem. The first two Eqs. (S5–S6) decouple from Eq. (S7). To study the dynamics of

coupled perturbations ϕ̃′(t) and θ′(t) we write them in the form {ϕ̃′(t), θ′(t)} = {ϕ̃′, θ′} eλt.

Substituting this into (S5–S6) we obtain the homogenous system of algebraic equations for

the perturbation amplitudes ϕ̃′ and θ′:

ϕ̃′sθ(λ+Bcψ) + ωθ′ = 0 (S8)

−ϕ̃′(Acθ +Bsψsθ) + λθ′ = 0 . (S9)

Nontrivial solutions of Eqs. (S8–S9) require that determinant vanishes, yielding the quadratic

equation for the increment: λ2+λBcψ+ω (A cot θ +Bsψ) = 0. Since the high-frequency sync

solution is stable, we expect exponential decay of the perturbations. Indeed, for the frequency

A < ω < ω∗, the equation has two negative real roots, while for ω∗ < ω < ωs−o =
√
A2 + C2

it possesses two complex conjugate roots (with negative real parts). ω∗ is determined from

vanishing the discriminant D = B2c2ψ − 4ω(A cot θ + Bsψ) = 0. At ω = A one of the roots

is zero and at ω = ωs−o both roots turn purely imaginary, meaning that in either case, i.e.
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Figure S1: The increment λ1,2 as a function of driving frequency ν = ω/2π for the charac-
teristic frequencies: A/2π = 4.9 Hz, B/2π = 16.2 Hz and C/2π = 72.6 Hz. Solid (red) lines
stand for the real parts and dashed (blue lines) stand for the imaginary part.

close to tumbling/wobbling transition and to the sync/async transition small orientational

fluctuations (e.g. due to thermal noise) are important. For the practically relevant range

ω∗ < ω < ωs−o, the real part of the increment reads

Re λ = −B
2
cψ = −− B

2

√
A2 + C2 − ω2

C
= − 1

2p

√
ω2
s−o − ω2 , (S10)

where p ≡ κ⊥/κ‖ > 1 for a slender propeller. The roots λ1,2 are shown in Fig. S1 for the

values of characteristic frequencies estimated from experiments: A/2π ' 4.9 Hz, B/2π '

16.2 Hz and C/2π ' 72.6 Hz (see the upcoming sections for details). For these values,

ν∗ = ω∗/2π ≈ 13.3 Hz and for θ . arcsin (A/ω∗) ≈ 20◦ the roots are complex conjugate.

Now we can estimate Pe⊥r using τrel = |Re λ|−1 and τd = 1/D⊥r = κ⊥/κBT :

Pe⊥r =
τd
τrel

=
κ‖
√
ω2
s−o − ω2

2κBT
. (S11)

Following the same criterion Pe⊥r = 1 and using Eq. (S2) we arrive at the critical length of

steerable nanohelix:

L⊥r∗ =

(
2κBT

κ̃‖η
√
ω2
s−o − ω2

)1/3

. (S12)

Now, given the geometry of the nanohelices and driving frequency one can estimate L‖r∗
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and Lt∗ in Eqs.(S3) and (S4) respectively, while for the estimate of L⊥r ∗ in (S12) one would

also need the value of the step-out frequency. Comparing the critical lengths corresponding

to rotation about the helical axis and of the helical axis , one can tell that for the lat-

ter mechanism to be more restrictive, i.e. L⊥r∗ > L
‖
r∗ one needs 1

2

√
ω2
s−o − ω2 < ω, or just

ω/ωs−o > 1/
√

5 ≈ 0.45. For the particular example in Fig. S1 it translates into ν & 32.5 Hz.

Note that while L‖r∗, Lt∗ ∼ η−1/3, i.e. noise can be suppressed by increasing the viscosity

of the medium, steerability is not affected by the viscosity, as sufficiently below the step-

out frequency L⊥r∗ ≈
(
2κBT/κ̃‖ηωs−o

)1/3, where after substituting ωs−o ≈ C = m⊥H/κ‖

and using κ‖ = κ̃‖η(L⊥r∗)
3 we obtain a simple condition for steerability of predominantly

transversely magnetized nanomotors operating in sync regime:

(
2κBT

m⊥H

)1/3

. 1 . (S13)

Re-writing Eq. (S13) in terms of the Langevin parameter ξ = m⊥H/κBT , measuring the

relative importance of the magnetic and thermal forces, it would simply yield ξ > 2.

Magnetization, anisotropy field and magnetic torques

According to the SQUID measurements of an array of helices grown on wafer the anisotropy

field Ha ' 65 Oe, transverse magnetic moment (perpendicular to the Ni tablet axis) m⊥ ∼

2 · 10−14 emu and parallel magnetic moment (parallel to the Ni tablet axis) is m‖ ∼ 0.6 ·

10−14 emu (CGS). Note that a smaller value of Ha ∼ 10 Oe is typically reported for thin

Ni films,S3 however, a higher value could be a result of shape anisotropy, i.e. due to slight

elongation of the (ideally circular) Ni-tablet’s in-plane cross-section. Let us consider the

tablet as a mono-domain magnetic particle. The effective value of the in-plane anisotropy

constant K readsS3

K = 2π∆nM2
s . (S14)
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Figure S2: The schematic view of slightly elongated Ni-tablet in-plane cross-section with
infinite (A) and finite (B) value of magnetic anisotropy.

where Ms is the saturation magnetization of the magnetic, ∆n = n1− n2 is the difference of

the demagnetizing factors along shorter and longer axes, respectively, taken in plane of the

tablet. The corresponding value of the anisotropy field Ha readsS3

Ha = 2K/Ms = 4π∆nMs . (S15)

Let as estimate the aspect ratio b/a of the Ni tablet in-plane cross-section corresponding to

the measured anisotropy field. We use Ms = 480 Oe for the saturation magnetization of Ni

and Ha = 65 Oe, which results in ∆n = 0.011. The best estimated diameter of the Ni tablet

is d ≈ 70 nm and the height h ≈ 40 nm. The difference ∆n = 0.011 corresponds to elliptic

in-plane cross-section with semi-axes a = d/2 + δ and b = d/2 − δ, where δ = 0.6 nm, i.e.

, b/a ≈ 0.966. The values of the demagnetizing factors have been taken for the three-axial

ellipsoid with semi-axes h/2, a and b and calculated following.S4 Note that the measured

value is a mean averaged over many helices grown on wafer, while anisotropy field Ha of

individual helices may scatter due to shape variance.

The experimentally measured value m⊥ can be compared to a theoretical estimate m ∼

MsV , where V is the volume of the Ni-tablet. Approximating the tablet’s volume by that

of an oblate spheroid, V ≈ π
6
d2h, with d ≈ 70 nm and h ≈ 40 nm, we readily obtain

m ∼ 4.9 · 10−14 emu, that agrees quite well with the value m⊥ ∼ 2 · 10−14 emu.

Note that the amplitude of the actuating field in the experiment, H = 100 Oe, is larger
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than the measured anisotropy field Ha ≈ 65 Oe. To understand the effect of a strong driving

field H > Ha let us consider two limiting cases corresponding to (A) infinite (H � Ha)

and (B) finite (H & Ha) magnetic anisotropy, as depicted schematically in Fig. S2. In case

(A) the magnetic moment m is fixed with the particle (for simplicity shown to align with

the easy axis). In the sync hi-frequency rotation regime the external field H runs ahead of

the propeller’s magnetic moment m by an angle α < 90◦ S1 resulting in the magnetic torque

exerted on the propeller

L(A)
m = m×H . (S16)

In the case (B) the situation is different: the magnetic moment possesses the same absolute

value m, however, it is aligned with the effective magnetic field Heff = H + Ha where Ha

is directed along the magnetic easy axis,

m = m
Heff

|Heff |
. (S17)

Thus in case (B) the magnetic torque takes a form:

L(B)
m = m×H = m

Ha ×H

|H + Ha|
. m

Ha ×H

H
= mHa × h , (S18)

where h = H/H is a unit vector of the applied field.

Let us compare Eqs. (S16) and (S18). It is seen that for sufficiently strong magnetic field

the magnetic torque LBm saturates, i.e. , does not depend on the magnetic field amplitude.

Moreover, the ratio L(A)
m /L

(B)
m ≈ H/Ha. Therefore, working with magnetic field H > Ha does

not yield re-magnetizing of the particle, but only results in re-orientation of the magnetic

moment m. The theory of the previous section corresponding to the synchronous actuation

of the nanohelix with fixed remanent magnetization still applies, however, not all of the

power of external magnetic field is exploited since at H > Ha the torque L(B)
m saturates and

becomes insensitive to the external field amplitude. Therefore, the magnetic torque exerted
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on nanohelices in this case should be replaced by

m⊥H → m⊥Ha . (S19)

For instance, in strong fields H > Ha, the step-out frequency will have the form ωs−o ≈ C =

m⊥Ha/κ‖.

When the frequency of the driving field ω > ωs−o and its amplitude H > Ha, the dynamic

re-magnetizing of the nanohelices, or so-called rotational hysteresis,S5 takes place. The value

of the magnetic torque exerted on a nanohelix in Eq. (S19) should then be replaced by

m⊥Ha → m⊥Ha

(
ω

ωs−o
−

√
ω2

ω2
s−o
− 1

)
. (S20)

This regime is analogous to the async regime, but the origin of the step-out is of magnetic

not of hydrodynamic nature.

Viscous resistances and step-out frequency

The nanohelices used in experiments have the total length (chiral part plus head) of L ≈

400 nm, pitch P ≈ 100 nm and width 2(R + r) ≈ 120 nm. The filament radius roughly

estimated from the micrograph is r ≈ 27 nm and the helical radius r ≈ 33 nm, so that

R/r ≈ 1.2, leading to a helical pitch angle Θ = tan−1(2πR/P ) ≈ 64◦. The length of the

head ∼ 90 nm and its width ∼ 70 nm, so that the aspect of the propeller is estimated as

ε = 120/400 ' 0.30 (with head) and ε = 120/310 ' 0.39 (only the chiral part). These values

correspond to a helix with 3.6 turns (with the head) or 2.8 turns (without the head). The

3.6-turn helix will be used for estimating rotational resistances κ̃‖, κ̃⊥, while the 2.8-turn

helix will be used for the estimate of the coupling resistance coefficient B̃‖. The particle-based

computations (see Ref. S1 for details) yield κ̃‖ ' 0.178, κ̃⊥ ' 0.796 and B̃‖ ' 0.0112.

The approximate values of rotational resistance coefficients κ̃‖, κ̃⊥ can also be obtained
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using the exact results for a prolate spheroid embedding the helix. For a prolate spheroid

with the semi-axes a and b, we haveS6 κ‖ = 2ηV n−1⊥ , κ⊥ = 2ηV a2+b2

a2n‖+b2n⊥
, where V = 4

3
πab2

is the spheroid volume, n‖ and n⊥ = (1− n‖)/2 are the depolarizing factors of the spheroid.

Thus,

κ̃‖ =
π

3
ε2n−1⊥ , κ̃⊥ =

π

3
ε2

1 + ε2

n‖ + ε2n⊥
, (S21)

where ε = b/a < 1 is the aspect ratio of the spheroid. Defining eccentricity e =
√

1− ε2 the

depolarizing factor along the symmetry axis readsS4 n‖ = 1−e2
e3

(
1
2

ln 1+e
1−e − e

)
. Substituting

the aspect ratio ε = 1/3.33 ' 0.3 of the 3.6-turn helix into Eqs. (S21) yields κ̃‖ ≈ 0.207,

κ̃⊥ ≈ 0.755, in a close agreement with the results of the particle-based calculations (i.e.

compare to κ̃‖ ' 0.178, κ̃⊥ ≈ 0.796).

Using the estimated values of κ̃‖ = 0.178, κ̃⊥ = 0.796 together with Ha = 65 Oe,

m⊥ = 2 · 10−14 emu and m‖ ∼ 0.6 · 10−14 emu, yields the three characteristic frequen-

cies of nanohelices in 25 cP glycerol-water solution, A/2π = m‖Ha/2πκ̃⊥ηL
3 ' 4.9 Hz,

B/2π = m⊥Ha/2πκ̃⊥ηL
3 ' 16.2 Hz and C/2π = m⊥Ha/2πκ̃‖ηL

3 ' 72.6 Hz. Thus, the

corresponding step-out frequency

νs−o =

√
A2 + C2

2π
≈ C

2π
≈ 73 Hz .

is in an excellent agreement to the experimental observations showing some decrease of the

propulsion speed at the actuating frequency of 80 Hz.

Minimal size of externally actuated nanomotors

Now let us estimate the effect of the noise in experiments with nanohelices. We assume

high-frequency synchronous regimeS1 for frequencies below the step-out frequency that we

estimated as νs−o ≈ 73 Hz. In water (η = 1 cP) for the actuating frequency ν = 50 Hz we

find using Eqs. (S3) and (S4) that L‖r∗ ≈ 1, 060 nm and Lt∗ ≈ 420 nm. These estimates
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support the experimental findings indicating that thermal fluctuations hinder propulsion of

the nanohelices in water. However, in glycerol-water solution with higher viscosity η = 25 cP

for the same operating conditions we find L‖r∗ ≈ 360 nm and Lt∗ ≈ 140 nm, so that thermal

noise is not dominating the motion of the 400 nm–long nanomotors in accord with the exper-

imental observations. Note that Eq. (S3) estimating the effect of the thermal fluctuations on

forced rotation of the nanohelix about its axis is more restrictive than Eq. (S4), estimating

retardation of the forward propulsion, as generally B̃‖ � κ̃‖. However, unless L > Lt∗,

some forward propulsion should be observed, even if forced rotation is hindered by the noise,

i.e. even if L < L
‖
r∗. However, when L . Lt∗, the forward motion will be hindered. For

the lowest frequency of ν = 25 Hz used in experiments (see Tab. 1 in the main text) with

glycerol-water solution (η = 25 cP) we find that L‖r∗ ≈ 450 nm and Lt∗ ≈ 180 nm, indicating

that forward propulsion is feasible in accord with experimental observations.

To verify the steerability condition in Eq. (S13) we calculate the Langevin parameter,

ξ =
m⊥Ha

κBT
≈ 32� 2 ,

indicating that nanohelices are steerable.

Propulsion Experiments

Video 1

Propulsion of a nano-screw at a frequency of 50 Hz and a magnetic field strength of 100 Oe,

in a glycerol-water mixture with a viscosity of 25 cP over a time of 2:50 min. The video

is sped up 5x. The number in the upper left displays the time, the red arrow shows the

direction of propulsion set by the magnetic field. The scale bar is 10 µm.
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Video 2

Propulsion of an ensemble of nano-screws through a solution of 5 mg/mL HA at a frequency

of 50 Hz and a magnetic field strength of 100 Oe, over a time of 2:32 min. The video is sped

up 5x. The number in the upper left displays the time, the red arrow shows the direction of

propulsion set by the magnetic field. The scale bar is 10 µm.
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