Descriptions of the Associated Matlab Files and
Some Supporting Figures

Sandipan Roy, Yves Atchadé and George Michailidis

November 15, 2018

There are six main MATLAB files with four of them containing the
codes for the simulation studies and the other two containing the codes for
analyzing the real data. Below we present a brief description of the files in
the archive.

1 Main Files

e newpar_comm_detec_oir.m: This matlab file can be used to compare
performances of our algorithm and Pseudo-likelihood method for vary-
ing out-in-raio values over 30 replications of the experiment. The re-
sulting values are stored in several files mentioned at the end of the
matlab code.

e newpar_comm_detec_lambda.m: This matlab file can be used to com-
pare performances of our algorithm and pseudo-likelihood method for
different values of the average degree A over 30 replications. The re-
sulting values are stored in several files mentioned at the end of the
matlab code.

e newpar_comm_real_detec.m: This matlab file can be used to analyze
the Rice University dataset using a stochastic blockmodel without co-
variate.

e newpar_comm_cov_detec.m: This matlab file can be used to analyze
the Rice University dataset using a stochastic blockmodel with covari-
ate.

e blockmodel_covariate.m:This matlab file is used to generate esti-
mation error results for different parameters in a SBM with covariate



and also the corresponding NMI levels. One can vary the key input
parameter “oir” or “A” in the code to obtain different results. Further
the parameter “pri.truth”(class probabilities) in the code can also be
changed to obtain balanced or unbalanced community size.

e blockmodel_covariate_nocomm.m: This is the counter part of the com-
munication version viz. the noncommunication version for blockmodel
with covariate.

2 Supporting Files

e dcBlkMod2.m:This is a class of matlab functions generating a base
stochastic Blockmodel without covariate along with a edge probability
matrix and an adjacency matrix from the same model.

e genDCB1KMod2.m: This particular function can be used to generates the
adjacency matrix and the edge probability matrix for an SBM without
covariate.

e initLabel5b.m: This matlab function generates the initial labeling of
the nodes from a given sparse Adjacency matrix and a value of K
(number of groups).

e cpldc.m:This matlab function is used to obtain the pseudo-likelihood
estimate from the input adjacency matrix and the initial labeling.

e cplEstimParam.m:This function estimates the blockmodel (without
covariate) parameters.

e compParamErr2.m: This function calculates the relative squared error
of estimation of the blockmodel (without covariate) parameters.

e community_sum.m:This matlab function computes cross sums between
the specified communities.

e ncomm.m: This function is used to find the number of nodes in a spec-
ified community.

e parEM.m:This is a matlab function used to perform the Monte-Carlo
EM type algorithm for each iteration over several machines. Outputs
are the parameter estimates and the updated labels.



e gibbs_ccstr.m:This matlab function performs the Gibbs sampling
for drawing the latent node labels from the posterior in the case of
case-control approximated likelihood.

e strcc_commsum.m: This function calculates the cross sum between the
terms attributed by the nodes from different communities in the ap-
proximated likelihood.

e strcc_zerosum.m: This function computes the contribution from the
zero terms in the subsampled likelihood.

e parEM_cov.m: This function performs the Monte-Carlo EM type algo-
rithm for covariate blockmodels in each iteration over several machines.
The function involves a Newton-Raphson optimization step to calcu-
late the estimates of the parameters. The chosen constant step-size
“a=0.27.

e gibbs_cov.m: This matlab function draws the latent random variables
from the posterior in the case of case-control approximation performed
on a loglikelihood from covariate blockmodel.

e cov_grad.m: This computes the gradient and the hessian of the ap-
proximated log-likelihood wrt the latent parameter 6, ., for the co-
variate blockmodel.

e cov_betagrad.m:This matlab function is used to calculate the gradi-
ent and the hessian of the approximated log-likelihood wrt the covari-
ate parameter 5.

e hungarian_algo_clusters.m: This function returns the bipartite matched
(matched with covariate blockmodel) clustering solution for the com-
munities recovered when blockmodel without covariate is fitted.

Dataset

Rice31.mat:This is a mat file containing the adjacency matrix (describing
Facebook connections among the individuals) and the covariate information
of the students in the Rice University.



0.2

©
[
o

Class Probabilities
o
f

0.05

2 4 6 8 10 12 14 16 18 20
Communities

Figure 1: Bar plot of the class probabilities for parallel MCEM applied to
SBM with covariate. The cluster 9 has the highest class probability
indicating majority of individuals belonging to this particular group.



600

500

400

Number of Nodes

200

100

0 100 200 300 400 500 600
Degree

Figure 2: Plot of the degree distribution of the Rice University network
Following diagrams present computationally equivalent ways of present-

ing Algorithm 3 (without communication) and Algorithm 4 (with commu-
nication) respectively.



AD A® e AD) (1st iteration)

Transferring 7' random subsamples to 7" different Cores

No communication among different cores

AW A2 e A (2nd iteration)

No Communication among different cores

AD A® e A@) (Rth iteration)
1(%1) gg) fl(%T) Estimates from different cores after R iterations

L

Final aggregated estimate

Figure 3: Parallel Non-communication Algorithm



ansferring 7' random subsamples to 7' different Cores

‘A(l) ‘A(Z) ‘A(3) A (Ist iteration)

Communication among different cores in a circular manner
‘ A ‘ AWM ‘ A® ‘ e (2nd iteration)

Communication after 2nd iteration
‘A(T*I) A ‘ AD (3rd iteration)

Circular communication among cores

(Rth iteration, o;(R) = u;(R) + T1(u;(R) = 0),
o1(R o2(R o3(R op(R
Al() AI() AT) w(R)=(G—R+T+1)modT)

1(%1) 5:{2) gg) fg) Estimates from different cores after 7' iterations

\

Final aggregated estimate

Figure 4: Parallel Communication Algorithm

The Rth iteration in Figure 4 describes the subsample that will be
present at each machine. For example, Taking 7' = 3 and R = 4, o0;(R)
in Figure 4 is given by

oi(R)=imod T .

One gets back the 1st iteration row after running for R = 4 iterations.
Hence, it is clear from this example that performing the communication
based algorithm R (Here R = 4) number of iterations allow the running
estimates in each machine to be updated based on all the sub-adjacency
matrices available. The circular communication scheme is presented by the
general notation used for the Rth iteration subsamples in the relevant figure.



